Search Results

You are looking at 81 - 90 of 99 items for

  • Author or Editor: Chen Wang x
Clear All Modify Search

The relationship between soil texture and the degree of apple replant disease (ARD) was analyzed from the perspective of the microbial community structure and diversity within the rhizosphere soil of Malus hupehensis Rehd. seedlings. Three different textured soils were taken from different apple orchards in Laizhou, Yantai. The soils were divided into two parts, one was kept in replanted conditions, and the other was fumigated with methyl bromide to act as a high standard control. The strength of ARD occurrence was examined by measuring fresh and dry weight suppression (%) of the M. hupehensis seedlings. Differences in the fungal community structure (especially in Fusarium) among the three soil texture types were analyzed using high-throughput sequencing. The results showed that replanted loam clay soil had the highest fungal diversity, followed by sandy loam soil and finally loam soil. The richness of fungi between soil textures, however, was not significantly different. At the genus level, the relative abundance of Fusarium was 1.96%, 0.78%, and 10.89% in replanted sandy loam, replanted loam soil, and replanted loam clay soil, respectively. Moreover, the gene copy number of Fusarium oxysporum, Fusarium solani, and the inhibition rate of fresh weight of M. hupehensis seedlings were the same in the three soil textures. The plant height, photosynthesis (net) (Pn), and stomatal conductance (g S) of the M. hupehensis seedlings were significantly less in the replanted soil compared with the control treatments, with the overall difference being greatest in replanted loam clay soil, followed by replanted sandy loam and then replanted loam soil.

Open Access

Bridge grafting is widely applied in trunk-wounded apple trees. In this study, we carried out semigirdling and ring girdling on the trunk of ‘Nagafu 2’/Malus baccata (L.) Borkh apple trees to simulate trunk injury. We then bridge grafted a M9 self-rooted rootstock on the injured trunks to study the effects of bridge grafting on flowering, fruit-set, tree vigor, and fruit characteristics in ‘Nagafu 2’ apple. The results showed that both semigirdling and ring girdling due to the large wounded area caused significant decrease in flowering, fruit-set, and tree vigor (estimated by measuring leaf area, leaf gas exchange, tree height, and shoot growth); in addition, ring girdling increased flesh and peel firmness. However, bridge grafting of M9 self-rooted rootstock on semigirdling and girdling apple trees resulted in partial recovery of tree vigor (leaf area and photosynthesis) and maintaining the reduction of vegetative growth, thereby increasing flowering, fruit-set, yield, fruit weight, and peel firmness.

Free access

Euonymus alatus (Thunb.) Sieb., commonly known as “burning bush,” is an extremely popular landscape plant in the United States as a result of its brilliant showy red leaves in fall. However, E. alatus is also seriously invasive because of its prolific seed production and effective seed dispersal by birds. Thus, development of sterile, non-invasive, seedless triploid E. alatus is in high demand. In this article, we report successful production of triploid E. alatus using endosperm tissues as explants. In our study, ≈50% of immature endosperm explants and 14% of mature endosperm explants formed compact, green calli after culture in the dark for 8 weeks and then under light for 4 weeks on Murashige and Skoog (MS) medium supplemented with 2.2 μM BA and 2.7 μM α-naphthaleneacetic acid (NAA). Approximately 5.6% of the immature endosperm-derived calli and 13.4% of mature endosperm-derived calli initiated shoots within 8 weeks after they were cultured on MS medium with 4.4 μM benzyladenine (BA) and 0.5 μM indole-3-butyric acid (IBA). Eighty-five percent of shoots rooted after culture on woody plant medium (WPM) containing 4.9 μM IBA for 2 weeks and then on hormone-free WPM medium containing 2.0 g·L−1 activated charcoal for 4 weeks. Eight independently regenerated triploid plants have been identified. Triploid plant regeneration rates observed were 0.42% from immature endosperm explants and 0.34% from mature endosperm explants, respectively, based on the number of endosperm explants cultured. Because triploid plants cannot produce viable seeds, and thus are sterile and non-invasive, some triploid E. alatus plant lines reported here can be used to replace the currently used invasive counterparts. Chemical names used: benzyladenine (BA), indole-3-butyric acid (IBA), and α-naphthaleneacetic acid (NAA).

Free access

Seed germination patterns were studied in Echinacea purpurea (L.) Moench grouped by seed source, one group of seven lots from commercially cultivated populations and a second group of nine lots regenerated from ex situ conserved wild populations. Germination tests were conducted in a growth chamber in light (40 μmol·m–2·s–1) or darkness at 25 °C for 20 days after soaking the seeds in water for 10 minutes. Except for two seed lots from wild populations, better germination was observed for commercially cultivated populations in light (90% mean among seed lots, ranging from 82% to 95%) and in darkness (88% mean among seed lots, ranging from 82% to 97%) than for wild populations in light (56% mean among seed lots, ranging from 9% to 92%) or in darkness (37% mean among seed lots, ranging from 4% to 78%). No germination difference was measured between treatments in light and darkness in the commercially cultivated populations, but significant differences were noted for treatments among wild populations. These results suggest that repeated cycles of sowing seeds during cultivation without treatments for dormancy release resulted in reduced seed dormancy in E. purpurea.

Free access

Bacterial wilt (BW), caused by Pseudomonas solanacearum E.F. Smith, is one of the most destructive disease of tomato (Lycopersicon esculentum Mill.) in the tropics. Twenty tomato lines/accessions previously identified as BW-resistant were evaluated for BW reaction in fields providing high disease pressure at Subang, Indonesia; Los Baños, Philippines; Malaysian Agricultural Research and Development Institute (MARDI), Kuala Lumpur; Asian Vegetable Research and Development Center (AVRDC), Taiwan; and Taiwan Seed Improvement and Propagation Service (TSIPS). Entries also were tested in the greenhouse at the AVRDC with a P. solanacearum strain from Taiwan (Pss4) using a drench inoculation method. Objectives of the study were to identify stable sources of BW resistance for southeast Asian tomato breeding programs, and to determine the correlation between field and greenhouse reactions. Mean entry survival was 21.6% at Subang, 31.9% at Los Baños, 76.7% at the AVRDC, 93.6% at Malaysia, and 93.3% at TSIPS, indicating that most entries were resistant at MARDI and the Taiwan locations but susceptible at Subang and Los Baños. L285 (mean survival = 83.8%) and CRA 84-58-1 (mean survival = 79.4%) were the most resistant entries in the field trials. Mean survival (70.1%) of CRA 66-derived entries was significantly better than the mean of entries with resistance derived from UPCA 1169 or UPCA 1169 plus `Venus' or `Saturn'. Mean survival of AVRDC entries bred in the 1980s (59.4%) was significantly greater than mean survival of AVRDC lines bred in the 1970s (45.7%). The correlation between entry BW percent survival averaged over the five field trials and entry means from drench inoculation in the greenhouse was highly significant (r = 0.70), suggesting that the drench inoculation method is effective in selection for BW resistance.

Free access

Flesh browning is an important negative trait for quality preservation of fresh-cut fruits. To obtain a better understanding of the inheritance and genetic control of flesh browning in apple, the phenotype of a hybrid population derived from ‘Jonathan’ × ‘Golden Delicious’ was studied for 2 successive years. The inheritance of the flesh browning trait was analyzed by the frequency distribution of the phenotypes. Flesh browning-associated major genes were then mapped by screening genome-wide simple sequence repeat (SSR) markers. Flesh browning is inherited quantitatively and showed a clear bimodal frequency distribution, indicating that the segregation of major genes is involved in the variation. The segregation ratio of light and heavy browning was 7:1 in 2010, 2011, and 2010 + 2011, suggesting that the inheritance of the trait in apple involves three segregated loci of major genes. The heritability of the major gene effect was 72.14% and 72.76% in 2010 and 2011, respectively. SSR markers were screened from 600 pairs of SSR primers located on 17 apple linkage groups (LGs). The three major genes were mapped on LG10, 15, and 17 on the apple genome, respectively, by linkage analysis of flesh browning phenotypes and the genotypes of SSR markers. Two quantitative trait loci (QTLs) for flesh browning were mapped on LG15 of ‘Jonathan’ and LG17 of ‘Golden Delicious’, respectively, which are the same linkage groups that two major genes mapped on.

Free access

Landrace tea populations are important recourses for germplasm conservation and selection of elite tea clone cultivars. To understand their genetic diversity and use them effectively for breeding, two traditional landrace tea populations, Beichuan Taizicha (BCTZ) and Nanjiang Dayecha (NJDY), localized to northern Sichuan, were evaluated for morphological characters, simple sequence repeat (SSR)–based DNA markers and the contents of biochemical components. A wide range of morphological variation and a moderately high level of DNA polymorphism were observed from both BCTZ and NJDY. NJDY had on average, bigger leaves, larger flowers, higher total catechins (TCs), and greater gene diversity (GD) than BCTZ. Interestingly, samples from BCTZ had a wide range in the ratio of galloylated catechins to nongalloylated catechins (G/NG) (1.83–8.12, cv = 48.8%), whereas samples from NJDY were more variable in total amino acid (TAA) content (25.3–50.8 mg·g−1 dry weight) than those from BCTZ. We concluded that the two Camellia sinensis landrace populations are of great interest for both individual selection breeding and scientific studies.

Free access

High temperature stress is a major limiting factor for pepper productivity, which will continue to be a problem under climate change scenarios. Developing heat tolerant cultivars is critical for sustained pepper production, especially in tropical and subtropical regions. In fruiting crops, like pepper, reproductive tissues, especially pollen, are the most sensitive to high temperature stress. Typically, pollen viability and germination are assessed through staining and microscopy, which is tedious and potentially inaccurate. To increase efficiency in assessing pollen traits of pepper, the use of impedance flow cytometry (IFC) has been proposed. We conducted three independent experiments to determine the most effective methodology to use IFC for evaluating pollen traits for heat tolerance in pepper. Seven floral developmental stages were evaluated, and stages 3, 4, and 5 were found to best combine high pollen concentration and activity. Flowers in development stages 3, 4, or 5 were then heat treated at 41, 44, 47, 50, and 55 °C or not heat treated (control). The critical temperature to assess heat tolerance using IFC was found to be 50 °C, with a reduction in pollen activity and concentration occurring at temperatures greater than 47 °C. Twenty-one entries of pepper were then accessed for pollen traits using the staining and IFC methods over 2 months, April (cooler) and June (hotter). Growing environment was found to be the greatest contributor to variability for nearly all pollen traits assessed, with performance during June nearly always being lower. PBC 507 and PBC 831 were identified as being new sources of heat tolerance, based on using IFC for assessing pollen. Pollen viability determined by staining and pollen activity determined using IFC were significantly positively correlated, indicating that IFC is an efficient and accurate method to assess pollen traits in pepper. This work provides a basis for further research in this area and supports more efficient breeding of heat-tolerant cultivars.

Open Access