Search Results

You are looking at 71 - 80 of 80 items for

  • Author or Editor: Genhua Niu x
Clear All Modify Search

High soil salinity often results in poor stand establishment, reduced plant growth, and reduced yield of many horticultural crops such as peppers (Capsicum annuum). We investigated the effects of soil salinity and soil type on seedling emergence and growth of four commercial peppers (‘NuMex Joe E. Parker’, ‘NuMex Nematador’, ‘NuMex Primavera’, and ‘Jupiter’) in greenhouse experiments. Seeds were sown in either a loamy sand or a silt loam soil in pots and irrigated with saline solutions at electrical conductivity of 0.9 (tap water), 3.0, or 6.0 dS·m−1 (Expt. 1) or at 0.0 [reverse osmosis (RO) water], 0.9, or 1.5 dS·m−1 (Expt. 2). No seedling emergence was observed in treatments irrigated with 3.0 or 6.0 dS·m−1 solutions. The salinity at the top soil layer increased linearly with time when subirrigated with tap and saline solutions in both soil types, whereas no substantial increase in soil salinity was found when subirrigated with RO water or overhead irrigation with tap water. Salt accumulation at the top soil layer was greater in loamy sand than in silt loam. Seedling emergence percent subirrigated with RO water ranged from 70% to 80% in loamy sand and 45% to 70% in silt loam, depending on pepper cultivars. When subirrigated with tap water and saline solutions, the emergence percent ranged from 0% to 60%, depending on pepper and soil types. In Expt. 3, seedlings were germinated in commercial potting mix and grown in 1.8-L pots containing commercial potting mix. Saline solution treatments of 1.4 (control, nutrient solution), 2.1, 2.9, 3.5, or 4.2 dS·m−1 were initiated when seedlings had 11 to 13 leaves. Five weeks after initiating saline water irrigation, the reduction in shoot dry weight was greater in ‘Jupiter’ and ‘NuMex Primavera’ as compared with ‘NuMex Joe E. Parker’ and ‘NuMex Nematador’, but the differences were small.

Free access

Because of limited supply of high-quality water, alternative water sources have been used for irrigation in water-scarce regions. However, alternative waters usually contain high salt levels, which can cause salt damage on salt-sensitive plants. A greenhouse study was conducted to evaluate the relative salt tolerance of 10 common ornamental taxa to saline water irrigation. The 10 taxa studied were Chaenomeles speciosa ‘Orange Storm’ and ‘Pink Storm’ (Chaenomeles Double Take™); Diervilla rivularis ‘G2X885411’, ‘G2X88544’ (Diervilla Kodiak®, Black, Orange, and Red, respectively), and ‘Smndrsf’; Forsythia ×intermedia ‘Mindor’ (Forsythia Show Off®); Hibiscus syriacus ‘ILVOPS’ (Hibiscus Purple Satin®); Hydrangea macrophylla ‘Smhmtau’ and ‘Smnhmsigma’ (Hydrangea Let’s Dance® Blue Jangles® and Rave, respectively); and Parthenocissus quinquefolia ‘Troki’ (Parthenociss quinquefolia Red Wall®). Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) eight times on a weekly basis. The results indicated that the 10 ornamental taxa had different morphological and physiological responses to salinity. The C. speciosa and D. rivularis plants in EC 5 had severe salt foliar damage, whereas those in EC 10 were dead. Hibiscus syriacus ‘ILVOPS’ performed well in EC 5 treatment with a shoot dry weight (DW) reduction of 26%, but those in EC 10 had severe foliar salt damage. Hydrangea macrophylla, F. ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ were the most salt tolerant with minor foliar salt damage. The two H. macrophylla cultivars had the highest shoot sodium (Na) and chlorine (Cl) concentrations with a visual quality of 3 (scale 0 to 5 with 0 for dead plants and 5 for excellent performance), indicating that H. macrophylla plants adapted to elevated salinity by tolerating high Na and Cl concentrations in leaf tissue. Forsythia ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ had relatively low leaf Na and Cl concentration, indicating that both taxa are capable of excluding Na and Cl. Chaenomeles speciosa and D. rivularis were sensitive to salinity with great growth reduction, severe foliar salt damage, and high Na and Cl accumulation in leaf tissue.

Free access

Viburnums are widely used in gardens and landscapes throughout the United States. Although salinity tolerance varies among plant species, research-based information is limited on the relative salt tolerance of viburnum species. The morphological and growth responses of 12 viburnum taxa to saline solution irrigation were evaluated under greenhouse conditions. Viburnum taxa included Viburnum ×burkwoodii, V. cassinoides ‘SMNVCDD’, V. dentatum ‘Christom’, V. dentatum var. deamii ‘SMVDLS’, V. dilatatum ‘Henneke’, V. בNCVX1’, V. nudum ‘Bulk’, V. opulus ‘Roseum’, V. plicatum var. tomentosum ‘Summer Snowflake’, V. pragense ‘Decker’, V. ×rhytidophylloides ‘Redell’, and V. trilobum. A nutrient solution at an electrical conductivity (EC) of 1.3 dS·m−1 (control) or saline solutions at ECs of 5.0 and 10.0 dS·m−1 were applied eight times over a 9-week period. Growth, visual quality, and morphological characteristics were quantified at the 4th week and 8th–9th week to assess the impact of salinity stress on the viburnum taxa. Saline solution irrigation imposed detrimental salinity stress on viburnum plant growth and visual quality, and the degree of salt damage was dependent on the salinity levels of irrigation solution and the length of exposure to salinity stress as well as viburnum taxa. Viburnum ×burkwoodii and V. בNCVX1’ had little foliar salt damage during the entire experiment, except those irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited slight to moderate foliar salt damage at the eighth week. Viburnum dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum irrigated with saline solution at an EC of 5.0 dS·m−1 had slight and severe foliar salt damage at the 4th and 8th week, respectively. Plants irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited severe foliar salt damage at the 4th week, and all died by the 8th week. Other viburnum taxa also showed various foliar salt damage, especially at an EC of 10.0 dS·m−1. The shoot dry weights of V. ×burkwoodii and V. בNCVX1’ irrigated with saline solution at ECs of 5.0 and 10.0 dS·m−1 were similar to those in the control at both harvest dates. However, the shoot dry weight of other tested viburnum taxa decreased to some extent at the 9th week. A cluster analysis concluded that V. ×burkwoodii and V. בNCVX1’ were considered the most salt-tolerant viburnum taxa, whereas V. dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum were sensitive to salinity levels used in this study. This research may guide the green industry to choose relatively tolerant viburnum taxa for landscape use and nursery production where low-quality water is used for irrigation.

Open Access

More than half of residential water in Utah is used for landscape irrigation. Reclaimed water has been used to irrigate urban landscapes to conserve municipal water. High salt levels in reclaimed water may pose osmotic stress and ion toxicity to salt-sensitive plants. Viburnums are commonly used landscape plants, but salinity tolerance of species and cultivars is unclear. The objective of this study was to characterize gas exchanges and mineral nutrition responses of 12 viburnum taxa subjected to salinity stress in a greenhouse study. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.3 dS·m–1 or saline solution at an EC of 5.0 dS·m–1 or 10.0 dS·m–1. The net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate (E) of all viburnum taxa, except for Viburnum ×burkwoodii and V. בNCVX1’, decreased to various degrees with increasing salinity levels. The Pn, g S, and E of V. ×burkwoodii and V. בNCVX1’ were unaffected by saline solutions of 5.0 dS·m–1 at the 4th and 9th week after treatment initiation, with the exception of the Pn of V. ×burkwoodii, which decreased at the 9th week. Leaf sodium (Na+) and chloride (Cl–) concentrations of all viburnum taxa increased as salinity levels increased. Viburnum ×burkwoodii had relatively low leaf Na+ and Cl– when irrigated with saline solutions of 10.0 dS·m–1. Plant growth and gas exchange parameters, including visual score, plant height, Pn, g S, E, and water use efficiency (WUE) correlated negatively with leaf Na+ and Cl– concentrations. The ratio of potassium (K+) to Na+ (K+/Na+) and ratio of calcium (Ca2+) to Na+ (Ca2+/Na+) decreased when salinity levels increased. Visual score, plant height, Pn, g S, E, and WUE correlated positively with the K+/Na+ and Ca2+/Na+ ratios. These results suggest excessive Na+ and Cl– accumulation inhibited plant photosynthesis and growth, and affected K+ and Ca2+ uptake negatively.

Open Access

The green industry has identified the use of biodegradable containers as an alternative to plastic containers as a way to improve the sustainability of current production systems. Field trials were conducted to evaluate the performance of four types of 1-gal nursery biocontainers [keratin (KR), wood pulp (WP), fabric (FB), and coir fiber (Coir)] in comparison with standard black plastic (Plastic) containers on substrate temperature, water use, and biomass production in aboveground nurseries. Locations in Kentucky, Michigan, Mississippi, and Texas were selected to conduct experiments during May to Oct. 2012 using ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla) and ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) in 2013. In this article, we were focusing on the impact of alternative container materials on hourly substrate temperature variations and plant growth. Substrate temperature was on an average higher (about 6 °C) in Plastic containers (about 36 °C) compared with that in WP, FB, and Coir containers. However, substrate temperature in KR containers was similar to Plastic. Substrate temperature was also influenced by local weather conditions with the highest substrate temperatures recorded in Texas followed by Kentucky, Mississippi, and Michigan. Laboratory and controlled environment trials using test containers were conducted in Kentucky to evaluate sidewall porosity and evaporation loss to confirm field observations. Substrate temperature was similar under laboratory simulation compared with field studies with the highest substrate temperature observed in Plastic and KR, intermediate in WP and lowest in FB and Coir. Side wall temperature was higher in Plastic, KR, and FB compared with WP and Coir, while side wall water loss was greatest in FB, intermediate in WP and Coir, and lowest in plastic and KR. These observations suggest that the contribution of sidewall water loss to overall container evapotranspiration has a major influence on reducing substrate temperature. The porous nature of some of the alternative containers increased water use, but reduced heat stress and enhanced plant survival under hot summer conditions. The greater drying rate of alterative containers especially in hot and dry locations could demand increased irrigation volume, more frequent irrigation, or both, which could adversely affect the economic and environmental sustainability of alternative containers.

Free access

The performance of biocontainers as sustainable alternatives to the traditional petroleum-based plastic containers has been researched in recent years due to increasing environmental concern generated by widespread plastic disposal from green industry. However, research has been mainly focused on using biocontainers in short-term greenhouse production of bedding plants, with limited research investigating the use of biocontainers in long-term nursery production of woody crops. This project investigated the feasibility of using biocontainers in a pot-in-pot (PIP) nursery production system. Two paper (also referred as wood pulp) biocontainers were evaluated in comparison with a plastic container in a PIP system for 2 years at four locations (Holt, MI; Lexington, KY; Crystal Springs, MS; El Paso, TX). One-year-old river birch (Betula nigra) liners were used in this study. Results showed that biocontainers stayed intact at the end of the first growing season, but were penetrated to different degrees after the second growing season depending on the vigor of root growth at a given location and pot type. Plants showed different growth rates at different locations. However, at a given location, there were no differences in plant growth index (PGI) or plant biomass among plants grown in different container types. Daily water use (DWU) was not influenced by container type. Results suggest that both biocontainers tested have the potential to be alternatives to plastic containers for short-term (1 year) birch production in the PIP system. However, they may not be suitable for long-term (more than 1 year) PIP production due to root penetration at the end of the second growing season.

Free access

As the green industry is moving toward sustainability to meet the demands of society, the use of biocontainers as alternatives to petroleum-based plastic containers has drawn significant attention. Field trials of seven plantable biocontainers (coir, manure, peat, rice hull, soil wrap, straw, and wood fiber) were conducted in 2011 and 2012 at five locations in the United States to assess the influence of direct-plant biocontainers on plant growth and establishment and the rate of container decomposition in landscape. In 2011, container type did not affect the growth of any of the three species used in this study with an exception in one location. The three species were ‘Sunpatiens Compact Magenta’ new guinea impatiens (Impatiens ×hybrida), ‘Luscious Citrus’ lantana (Lantana camara), and ‘Senorita Rosalita’ cleome (Cleome ×hybrida). In 2012, the effect of container type on plant growth varied with location and species. Cleome, new guinea impatiens, and lantana plants grown in coir and straw containers were in general smaller than those in peat, plastic, rice hull, and wood fiber containers. After 3 to 4 months in the field, manure containers had on average the highest rate of decomposition at 88% for all five locations and two growing seasons. The levels of decomposition of other containers, straw, wood fiber, soil wrap, peat, coir, and rice hull were 47%, 46%, 42%, 38%, 25%, and 18%, respectively, in descending order. Plantable containers did not hinder plant establishment and posttransplant plant growth. The impact of container type on plant growth was smaller compared with that of location (climate). Similarly, the impact of plant species on pot decomposition was smaller compared with that of pot material.

Free access

As a result of its high photosynthetic efficiency, the tung tree (Vernicia fordii) is a fast-growing heliophile, yielding fruit within 3 years. In addition, tung oil extracted from the fruit seeds is an environmentally friendly paint used widely in China. However, mutual shading inside a tung tree canopy leads to a low yield of fruit because of weak or dead lower branches. In this project, a pot experiment was conducted to understand the growth, physiological, anatomical structure, and biochemical responses of tung trees under various shading levels. Tung tree seedlings were subjected to different light intensities—100% sunlight (no cover), L100; 75% sunlight (25% shading), L75; 50% sunlight (50% shading), L50; and 20% sunlight (80% shading), L20—from June to August. Results indicate that the L75 treatment reduced significantly the net photosynthetic rate (Pn), stomatal conductance (g S), transpiration rate (E), total aboveground and root dry weight (DW), maximum net photosynthetic rate (A max), and maximum rate of electron transport at saturating irradiance (Jmax) compared with the control, although plant height and leaf area (LA) were not reduced. Lower light intensities (L50 and L20) and longer duration of treatment led to greater reduction in growth, leaf thickness, and photosynthetic potential (A max and Jmax). Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll content were increased in the L50 and L20 treatments compared with L100 and L75. There was no significant reduction in the enzyme activities of ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate (PEPC) of the seedlings using the L75 treatment; however, lower light intensities (L50 and L20) and longer duration of shade treatment resulted in a significant reduction in enzyme activity. In summary, the results suggest that tung trees have greater photosynthetic activity under high light intensity. Shading, even at 20%, especially for the longer term, reduced photosynthetic efficiency and growth. To prevent growth reduction, tung trees should be grown under full sun with a daily light integral (DLI) of ≈46 mol·m‒2·d‒1, and mutual shading should be avoided by proper spacing and pruning.

Free access

Containers made from natural fiber and recycled plastic are marketed as sustainable substitutes for traditional plastic containers in the nursery industry. However, growers’ acceptance of alternative containers is limited by the lack of information on how alternative containers impact plant growth and water use (WU). We conducted experiments in Michigan, Kentucky, Tennessee, Mississippi, and Texas to test plant growth and WU in five different alternative containers under nursery condition. In 2011, ‘Roemertwo’ wintercreeper (Euonymus fortunei) were planted in three types of #1 (≈1 gal) containers 1) black plastic (plastic), 2) wood pulp (WP), and 3) recycled paper (KF). In 2012, ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla siebold var. koreana) was evaluated in 1) plastic, 2) WP, 3) fabric (FB), and 4) keratin (KT). In 2013, ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) was evaluated in 1) plastic, 2) WP, and 3) coir fiber (Coir). Plants grown in alternative containers generally had similar plant growth as plastic containers. ‘Roemertwo’ wintercreeper had high mortality while overwintering in alternative containers with no irrigation. Results from different states generally show plants grown in fiber containers such as WP, FB, and Coir used more water than those in plastic containers. Water use efficiency of plants grown in alternative containers vs. plastic containers depended on plant variety, container type, and climate.

Free access

As high-input systems, plant production facilities for liner and container plants use large quantities of water, fertilizers, chemical pesticides, plastics, and labor. The use of renewable and biodegradable inputs for growing aesthetically pleasing and healthy plants could potentially improve the economic, environmental, and social sustainability of current production systems. However, costs for production components to integrate sustainable practices into established systems have not been fully explored to date. Our objectives were to determine the economic costs of commercial production systems using alternative containers in aboveground nursery systems. We determined the cost of production (COP) budgets for two woody plant species grown in several locations across the United States. Plants were grown in plastic pots and various alternative pots made from wood pulp (WP), fabric (FB), keratin (KT), and coconut fiber (coir). Cost of production inputs for aboveground nursery systems included the plant itself (liner), liner shipping costs, pot, pot shipping costs, substrate, substrate shipping costs, municipal water, and labor. Our results show that the main difference in the COP is the price of the pot. Although alternative containers could potentially increase water demands, water is currently an insignificant cost in relation to the entire production process. Use of alternative containers could reduce the carbon, water, and chemical footprints of nurseries and greenhouses; however, the cost of alternative containers must become more competitive with plastic to make them an acceptable routine choice for commercial growers.

Free access