Search Results

You are looking at 61 - 70 of 71 items for

  • Author or Editor: John Ruter x
Clear All Modify Search

Water quality and quantity are increasingly important concerns for agricultural producers and have been recognized by governmental and nongovernmental agencies as focus areas for future regulatory efforts. In horticultural systems, and especially container production of ornamentals, irrigation management is challenging. This is primarily due to the limited volume of water available to container-grown plants after an irrigation event and the resultant need to frequently irrigate to maintain adequate soil moisture levels without causing excessive leaching. To prevent moisture stress, irrigation of container plants is often excessive, resulting in leaching and runoff of water and nutrients applied to the container substrate. For this reason, improving the application efficiency of irrigation is necessary and critical to the long-term sustainability of the commercial nursery industry. The use of soil moisture sensing technology is one method of increasing irrigation efficiency, with the on-farm studies described in this article focusing on the use of capacitance-based soil moisture sensors to both monitor and control irrigation events. Since on-farm testing of these wireless sensor networks (WSNs) to monitor and control irrigation scheduling began in 2010, WSNs have been deployed in a diverse assortment of commercial horticulture operations. In deploying these WSNs, a variety of challenges and successes have been observed. Overcoming specific challenges has fostered improved software and hardware development as well as improved grower confidence in WSNs. Additionally, growers are using WSNs in a variety of ways to fit specific needs, resulting in multiple commercial applications. Some growers use WSNs as fully functional irrigation controllers. Other growers use components of WSNs, specifically the web-based graphical user interface (GUI), to monitor grower-controlled irrigation schedules.

Full access

In five experiments, singlenode cuttings of `Red Cascade' miniature rose (Rosa) were treated with a basal quick-dip (prior to insertion into the rooting substrate) or sprayed to the drip point with a single foliar application (after insertion) of Dip `N Grow [indole-3-butyric acid (IBA) + 1-naphthaleneacetic acid (NAA)], the potassium salt of indole-3-butyric acid (K-IBA), or the potassium salt of 1-naphthaleneacetic acid (K-NAA); a single foliar spray application of Dip `N Grow with and without Kinetic surfactant; or multiple foliar spray applications of Dip `N Grow. Spray treatments were compared with their respective basal quick-dip controls {4920.4 μm [1000 mg·L-1 (ppm)] IBA + 2685.2 μm (500 mg·L-1) NAA, 4144.2 μm (1000 mg·L-1) K-IBA, or 4458.3 μm (1000 mg·L-1) K-NAA}. Cuttings sprayed with 0 to 246.0 μm (50 mg·L-1) IBA + 134.3 μm (25 mg·L-1) NAA, 0 to 207.2 μm (50 mg·L-1) K-IBA, or 0 to 222.9 μm (50 mg·L-1) K-NAA resulted in rooting percentages, total root length, percent rooted cuttings with shoots, and shoot length similar to or less than control cuttings. Exceptions were cuttings sprayed with 0 to 2.23 μm

(0.5 mg·L-1) K-NAA, which exhibited shoot length greater than the control cuttings. Addition of 1.0 mL·L-1 (1000 ppm) Kinetic organosilicone surfactant to spray treatments resulted in greater total root length and shoot length. Repeated sprays (daily up to seven consecutive days) had no or negative effects on root and shoot development.

Full access

Efficient water use is becoming increasingly important for horticultural operations to satisfy regulations regarding runoff along with adapting to the decreasing availability of water to agriculture. Generally, best management practices (BMPs) are used to conserve water. However, BMPs do not account for water requirements of plants. Soil moisture sensors can be used along with an automated irrigation system to irrigate when substrate volumetric water content (θ) drops below a set threshold, allowing for precise irrigation control and improved water conservation compared with traditional irrigation practices. The objective of this research was to quantify growth of Hibiscus acetosella ‘Panama Red’ (PP#20,121) in response to various θ thresholds. Experiments were performed in a greenhouse in Athens, GA, and on outdoor nursery pads in Watkinsville and Tifton, GA. Soil moisture sensors were used to maintain θ above specific thresholds (0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45 m3·m−3). Shoot dry weight increased from 7.3 to 58.8 g, 8.0 to 50.6 g, and from 3.9 to 35.9 g with increasing θ thresholds from 0.10 to 0.45 m3·m−3 in the greenhouse, Watkinsville, and Tifton studies, respectively. Plant height also increased with increasing θ threshold in all studies. Total irrigation volume increased with increasing θ threshold from 1.9 to 41.6 L/plant, 0.06 to 23.0 L/plant, and 0.24 to 33.6 L/plant for the greenhouse, Watkinsville, and Tifton studies, respectively. Daily light integral (DLI) was found to be the most important factor influencing daily water use (DWU) in the greenhouse study; DWU was also found to be low on days with low DLI in nursery studies. In all studies, increased irrigation volume led to increased growth; however, water use efficiency (grams of shoot dry weight produced per liters of water used) decreased for θ thresholds above 0.35 m3·m−3. Results from the greenhouse and nursery studies indicate that sensor-controlled irrigation is feasible and that θ thresholds can be adjusted to control plant growth.

Free access

Japanese-cedar has been underused in landscapes of the United States until recent years. There are now over 100 cultivars, many of which are grown in the southeast of the United States. Performance of cultivars has been described from U.S. Department of Agriculture (USDA) Zone 6b to USDA Zone 7b; however, there are no reports on how cultivars perform in USDA Zone 8. The current study was conducted to measure chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content and assign visual color ratings to determine if there was a relationship between pigment values and perceived greenness, which generally is regarded as a desirable and potentially heritable trait. Total chlorophyll (P = 0.0051), carotenoids (P = 0.0266), and the ratio of total chlorophyll to carotenoids (P = 0.0188) exhibited a positive relationship with greenness after accounting for season and tree effects. In contrast, the ratio of chlorophyll a to chlorophyll b did not have an effect on greenness. There was a linear relationship between total chlorophyll and carotenoid regardless of season (summer R 2 = 0.94; winter R 2 = 0.88) when pooled across 2 years. The observed correlation between chlorophyll and carotenoid content suggests they could be used interchangeably as predictors of greenness. There were large differences in rainfall between the 2 years that may have resulted in additional variation. Furthermore, the climate in which the evaluation was conducted differs greatly from the native distribution of japanese-cedar occurring in China and Japan.

Free access

On 1 May 2004, a 4 × 2 split-plot experiment was initiated in Athens, Ga., on Rhododendron ×kurume `Pink Pearl'. The four main-plot treatments were low irradiance, low irradiance May–October, low irradiance November–May, and high irradiance (high and low correspond to average daily PPF of 23.6 and 10.4 mol·m-2·d-1). The two subplot fall fertigation treatments were 75 mg·L-1 of nitrogen (N) and 125 mg·L-1 N. Plant stem tissue was harvested monthly from November to March, and analyzed for freeze resistance (LT50). Maximum quantum efficiency of PSII (Fv/Fm) was analyzed monthly with a Mini-pam photosynthesis yield analyzer. No interactions existed between fertilizer application and light intensity and the 125 mg·L-1 N fertilizer treatment reduced freeze resistance of azalea stems throughout the study. Fall fertilization had no effect on fluorescence and no interactions existed between fertilizer and irradiance treatments. In November, plants that received low irradiance May–October were less freeze-resistant than plants from the high-irradiance treatment. However, in January, plants that received low irradiance throughout the study were more freeze-resistant than plants that received the high-irradiance treatment. In November, Fv/Fm was higher in the low irradiance and low irradiance November–May treatments. In February and March, Fv/Fm was lower in the low May–November treatment that received low irradiance during summer than the low November–May treatment that received low winter irradiance. The use of shade to reduce irradiance may delay the acquisition of freeze resistance in fall. However, shade may reduce photosystem damage and increase a plants ability to acquire and maintain greater freeze resistance.

Free access

Paclobutrazol at 0 and 750 μl·liter–1 was sprayed on shoots of Feijoa sellowiana O. Berg. and Ligustrum japonicum Thunb. grown under similar production regimes in central Arizona (subtropical desert) and southern Georgia (humid temperate). Five months after application, Feijoa and Ligustrum leaves were generally smaller and thicker in Arizona than in Georgia. Arizona leaves were thicker than those in Georgia because of more layers of palisade and spongy mesophyll cells. Compared with leaves from control plants, paclobutrazol 1) increased Feijoa leaf area in Georgia, 2) decreased Ligustrum leaf area at both locations by ≈50%, and 3) decreased leaf thickness of both species in Arizona. Arizona Feijoa leaves had trichomes on adaxial and abaxial surfaces, whereas Georgia Feijoa leaves had trichomes on abaxial surfaces only. Paclobutrazol increased trichome frequency on adaxial surfaces of Arizona Feijoa leaves. Stomatal frequency of Georgia Feijoa leaves was about doubled by paclobutrazol. Reflectance of near-infrared radiation by paclobutrazol-treated Feijoa leaves was 1.4 times higher than that of nontreated leaves in Georgia and 1.9 times in Arizona. Near-infrared reflectance by Georgia Ligustrum leaves was 1.3 times higher than by Arizona Ligustrum leaves and was not affected by paclobutrazol. Leaf reflectance of photosynthetically active radiation (PAR) by Arizona Feijoa was higher than by Georgia Feijoa. Paclobutrazol increased PAR reflectance by Arizona Feijoa leaves. In contrast, Georgia Feijoa PAR reflectance was decreased by paclobutrazol. Paclobutrazol or location did not affect Ligustrum PAR reflectance. Chemical name used: (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol).

Free access

Growing southern highbush blueberries in milled pine bark beds ≈15 cm deep has become a popular fruit production system in Georgia and Florida. One of the primary limiting economic factors in this system is the cost of the growing media, which can exceed $10,000 U.S. per ha. In an effort to discover low-cost substitutes for milled pine bark, available waste or low-cost organic materials were screened for there suitability as growing media for southern highbush blueberries. Cotton gin waste, pecan shells, hardwood “flume” dirt, milled composted urban yard waste, composted urban tree trimmings, pine telephone pole peelings, and pine fence post peelings were evaluated. Only pine derived materials had a suitable pH (<5.3). Fresh pine telephone pole peelings (≈25% bark to 75% elongated fibers of cambial wood) and pine fence post peelings (≈75% bark to 25% elongated fibers of cambial wood) were evaluated for several seasons in containers and field trials. The growth index of blueberries in these materials was slightly less or equal to milled pine bark. Surprisingly, nitrogen deficiency was slight or not a problem. The results indicate that pine pole and post peelings may offer an excellent, low-cost substitute for milled pine bark for blueberry production.

Free access

Hydration and elemental absorption of two commercially-available polyacrylamide gels (A and B) were studied in response to a 24-hr soak time in Hoagland's solution concentrations of either 2X, 1X, 0.5X, 0.25X, 0.125X or 0X (deionized water). Elemental absorption of gel specimens was observed and analyzed within the gel matrix on a Philips CM12S STEM equipped with an EDAX 9800 plus EDS unit for micro x-ray analysis. Thick sections were cut on dry glass knives using an RMC MT6000 ultramicrotome. Surface analysis of bulk specimens was made with an AMR 1000A SEM plus PGT1000 EDS unit. Overall, gel hydration decreased quadratically as solution concentration increased linearly; however, hydration for gel A was generally greater than for gel B. Surface analysis of gel samples revealed the presence Ca, K, P, S, Fe, and Zn for both gels. An analysis within the matrix of gel B revealed the presence of Ca, K, P, S, Fe, and Zn; however, an analysis within the matrix of gel A revealed the presence of Zn, and Fe only. The increased absorptive capacity of gel A appeared to be coupled to reduced migration of salts into the gel matrix.

Free access

Increasing environmental concerns and legislation in many states and in other countries require that we take a more comprehensive sustainable “best management” approach to production techniques in nursery and greenhouse operations. This is particularly important because these production facilities are typically intense users of resources that are applied to relatively small land areas. We have developed an online knowledge center to facilitate the implementation of more sustainable practices within the nursery and greenhouse industry. A web-based knowledge center provides the most cost-effective mechanism for information delivery, as our potential audiences are extremely diverse and widespread. We currently have a registered user database of over 450 educators, growers, and industry professionals, and undergraduate and graduate students. A gateway website provides an overview of the issues and the goals of the project. The associated knowledge center currently has 25 in-depth learning modules, designed in a Moodle learning management framework. These learning modules are designed to actively engage learners in topics on substrate, irrigation, surface water, and nutrient and crop health management, which are integral to formulating farm-specific strategies for more sustainable water and nutrient management practices. Additional modules provide assessment and implementation tools for irrigation audits, irrigation methods and technologies, and water and nutrient management planning. The instructional design of the learning modules was paramount because there can be multiple strategies to improve site-specific production practices, which often require an integration of knowledge from engineering, plant science, and plant pathology disciplines. The assessment and review of current practices, and the decision to change a practice, are often not linear, nor simple. All modules were designed with this process in mind, and include numerous resources [pictures, diagrams, case studies, and assessment tools (e.g., spreadsheets and example calculations)] to enable the learner to fully understand all of the options available and to think critically about his/her decisions. Sixteen of the modules were used to teach an intensive 400-level “Principles of Water and Nutrient Management” course at the University of Maryland during Spring 2008 and 2009. The water and nutrient management planning module also supports the nursery and greenhouse Farmer Training Certification program in Maryland. The Maryland Department of Agriculture provides continuing education credits for all consultants and growers who register and complete any module in the knowledge center. Although these learning resources were developed by faculty in the eastern region of the United States, much of the information is applicable to more widespread audiences.

Full access

Pesticides have been the primary method of pest control for years, and growers depend on them to control insect and disease-causing pests effectively and economically. However, opportunities for reducing the potential pollution arising from the use of pesticides and fertilizers in environmental horticulture are excellent. Greenhouse, nursery, and sod producers are using many of the scouting and cultural practices recommended for reducing the outbreak potential and severity of disease and insect problems. Growers are receptive to alternatives to conventional pesticides, and many already use biorational insecticides. Future research should focus on increasing the effectiveness and availability of these alternatives. Optimizing growing conditions, and thereby plant health, reduces the susceptibility of plants to many disease and insect pest problems. Impediments to reducing the use of conventional pesticides and fertilizers in the environmental horticulture industry include 1) lack of easily implemented, reliable, and cost-effective alternative pest control methods; 2) inadequate funding for research to develop alternatives; 3) lack of sufficient educational or resource information for users on the availability of alternatives; 4) insufficient funding for educating users on implementing alternatives; 5) lack of economic or regulatory incentive for growers to implement alternatives; and 6) limited consumer acceptance of aesthetic damage to plants. Research and broadly defined educational efforts will help alleviate these impediments to reducing potential pollution by the environmental horticulture industry.

Full access