Search Results

You are looking at 61 - 69 of 69 items for

  • Author or Editor: Brent K. Harbaugh x
Clear All Modify Search

Cultivated caladiums are valued for their bright colorful leaves and are widely used in containers and landscapes. More than 1500 named cultivars have been introduced during the past 150 years, yet currently only about 100 cultivars are in commercial propagation in Florida. Caladium tubers produced in Florida account for 95% of the world supplies. Loss of caladium germplasm or genetic diversity has been a concern to future improvement of this plant. In addition, the relationship among the available cultivars, particularly those of close resemblance, has been lacking. This study was conducted to assess the genetic variability and relationship in commercial cultivars and species accessions. Fifty-seven major cultivars and 15 caladium species accessions were analyzed using the target region amplification polymorphism marker technique. This marker system does not involve DNA restriction or adaptor linking, but shares the same high throughput and reliability with the amplified fragment length polymorphism system (AFLP). Eight primer combinations amplified 379 scorable DNA fragments among the caladium samples. A high level of polymorphism was detected among the species accessions as well as among cultivars. These markers allowed differentiation of all the cultivars tested, including those hardly distinguishable morphologically. Clustering analysis based on these DNA fingerprints separated the cultivars into five clusters and Caladium lindenii far from other caladium species. The availability of this information will be very valuable for identifying and maintaining the core germplasm resources and will aid in selecting breeding parents for further improvement.

Free access

Caladiums (Caladium ×hortulanum) are widely grown as pot or landscape plants for their attractive leaves. Pythium root rot (Pythium myriotylum) is one of the most damaging diseases in caladium, severely reducing plant growth, aesthetic value, and tuber yield. Twenty-three commercial cultivars were inoculated with three aggressive isolates of P. myriotylum and evaluated for their resistance to root rot. Three cultivars, `Apple Blossom', `Blizzard', and `Etta Moore', were found to have a moderate level of resistance (partial resistance) to pythium root rot. The rest of these cultivars were susceptible or highly susceptible to Pythium infection, losing up to 94% of their root tissue to rotting within 10 days after inoculation. Data indicated a linear relationship between root rot severity and leaf loss severity on Pythium-inoculated plants and highlight the importance of controlling pythium root rot in caladium pot plant and tuber production. Comparison of some recent releases with their parents for pythium root rot resistance suggests the potential of developing new resistant caladium cultivars using the identified sources of resistance.

Full access

Host-plant nutritional status may affect the incidence and development of western flower thrips (WFT; Frankliniella occidentalis Pergande). Two greenhouse experiments were conducted to determine the responses of WFT population levels on impatiens (Impatiens wallerana Hook.f.) when plants were fertilized with commercially practiced rates of nitrogen (N) and phosphorus (P). Impatiens `Dazzler Violet' were grown with nutrient treatment combinations of 2 N rates (8 and 20 mm) by 2 P rates (0.32 and 1.28 mm). Individual plants grown in thrips-proof cages were inoculated with WFT at 2 or 4 weeks after transplant, in separate experiments, representing vegetative or reproductive stages of plant growth, respectively. Plants were destructively sampled weekly for 4 weeks following inoculation. Plant tissue N and P concentrations were significantly different across treatments: 8 and 20 mm N resulted in 4.9% and 6.3% N in tissue, respectively; 0.32 and 1.28 mm P resulted in 0.37% and 0.77% P in tissue, respectively. Nitrogen rates had no effect on WFT population levels. However, 4 weeks after inoculation with adult female WFT during the vegetative growth stage, plants fertilized with 1.28 mm P had more adult WFT than those fertilized with 0.32 mm P. Feeding damage varied depending on whether plants were inoculated in the vegetative stage with adult WFT or during reproductive growth with immature WFT. Plant size and number of flowers were lower in plants inoculated during the vegetative growth stage with adult WFT but were not affected when inoculation with immature WFT occurred during the reproductive stage, as most WFT were found feeding inside the nectariferous spurs of the flowers. Tissue N was lower in WFT-inoculated plants compared to noninoculated plants in both experiments.

Free access

Caladiums (Caladium × hortulanum) are widely grown for their bright colorful leaves. Pythium root rot, caused primarily by P. myriotylum, is one of the most important diseases in caladiums. This disease can dramatically reduce plant growth, impact plant aesthetical value, and lower tuber yield. Pythium infection in the roots may also lead to subsequent entry of Fusarium into tubers resulting in tuber rot. There has been a strong interest in the tuber production and greenhouse plant production industries to identify cultivars that are resistant or tolerant to Pythium. However, few studies have been conducted since the pathogen was identified, and little information is available regarding the existence of any possible resistance in commercial cultivars. Pythium isolates were made from diseased plants collected from different sites; their pathogenicity was confirmed using tissue culture-derived plants. Procedures were developed for oogonia spore production, inoculation, and disease severity assessment. Nineteen major commercial cultivars were inoculated at two spore densities and then maintained in greenhouses under growing conditions favorable for root rotting. Plant appearance, leaf characteristics and severity of root rotting were evaluated 2-3 times after inoculation. Observations indicated that the isolates were highly virulent. They induced visible root rot within 3-5 days, and caused a complete loss of the root system and plant death for some cultivars within 2-3 weeks after inoculation. Several cultivars, including `Candidum' and `Frieda Hemple' which are widely grown cultivars, had much less root rot, higher plant survival, and seemed to have moderate levels of resistance.

Free access

Fusarium tuber rot, incited by Fusarium solani, is the major cause of losses of tuber quality and quantity in caladium (Caladium ×hortulanum) during storage and production. To develop a reliable inoculation method for evaluating cultivar susceptibility to Fusarium tuber rot and identifying sources of resistance, the effect of temperature on the mycelial growth of F. solani in vitro and on tuber rot in vivo was examined. The optimal temperature was then used to study the aggressiveness of F. solani isolates. The effect of temperature (13, 18, 23, 28, and 33 °C) on radial mycelial growth of nine F. solani isolates in vitro was determined, and all responded similarly to temperature variables, with optimal growth predicted to be at 30.5 °C. The relationship of these temperatures to disease development was then determined for the most aggressive F. solani isolate 05-20 and it was found that disease development in inoculated tubers was greatest at low temperatures (13 and 18 °C). Cold damage to tubers was observed at 13 °C; therefore, 18 °C was chosen for all future disease screening. The aggressiveness of nine isolates was tested on two caladium cultivars. Significant differences among isolates were observed for the diameter of rotted tissue in both cultivars, indicating that choice of isolate was important for screening. Isolates 05-20 and 05-257 were highly aggressive on both cultivars. Tubers of 17 commercial caladium cultivars were inoculated with three isolates (04-03, 05-20, and 05-527) and incubated at 18 °C. The interaction between isolates and cultivars was highly significant (P < 0.0001), indicating that cultivars were not equally susceptible to different pathogenic isolates of F. solani. Lesion diameters differed significantly (P < 0.0001) among cultivars/isolates and ranged from 9.5 mm (‘Rosebud’ and ‘White Christmas’ for isolate 04-03) to 23.9 mm (‘Carolyn Whorton’ for isolate 05-20). The cultivars were ranked for susceptibility to tuber rot within each isolate and the normalized total rank for the three isolates was used to place cultivars into four categories: resistant (‘Candidum’, ‘Rosebud’, ‘White Christmas’, ‘Florida Sweetheart’, and ‘Aaron’), moderately resistant (‘White Wing’ and ‘Red Flash’), susceptible (‘Candidum Jr.’, ‘White Queen’, ‘Red Frill’, ‘Florida Cardinal’, ‘Miss Muffet’, and ‘Postman Joyner’), and highly susceptible (‘Fannie Munson’, ‘Gingerland’, ‘Frieda Hemple’, and ‘Carolyn Whorton’). The availability of these sources of host plant resistance, aggressive isolates, and resistance assessment techniques will facilitate the development of new Fusarium-resistant caladium cultivars.

Free access

Evidence is presented that native populations of Rudbeckia hirta L. (Blackeyed Susan) may be adapted to regional conditions. Two Florida ecotypes, one from north Florida (NFL) and one from central Florida (CFL), were better able to withstand the low fertility sites under three AHS Heat Zones (9, 10, 11) in Florida than were plants grown from Texas (TEX) seeds. Plants from TEX seed were the largest and showiest (generally the greatest number of flowers; largest flowers) but the shortest-lived. Most of these plants did not survive beyond August (about 6 months after transplanting) regardless of site. The CFL plants were especially tolerant of flooding conditions at Ft. Lauderdale. Under garden conditions, CFL Black-eyed Susan may be a highly desirable wildflower for subtropical or tropical summers.

Free access

Abstract

Gypsophila paniculata L. cv. Bristol Fairy flowered only under long photoperiods. Neither 5°C storage up to 8 weeks nor weekly GA3 sprays at concentration from 50 to 2,000 mg/liter induced flowering at short photoperiods. Established shoots with 12 nodes flowered after 3 weeks of 24 hours photoperiod induction, but young shoots with 5 nodes (newly pinched plants) did not flower after 3 weeks of induction. Critical photoperiod of several selections of ‘Bristol Fairy’ ranged from 12-18 hours. Inadvertent selection of clones with longer critical photoperiods appears to be responsible for poor winter flowering in Florida.

Open Access

Growth, flowering, and survival of black-eyed susan (Rudbeckia hirta L.) from three seed sources—northern Florida (NFL), central Florida (CFL), and Texas (TEX)—were evaluated under low input conditions for one growing season at four sites in Florida. Two sites were in American Horticultural Society (AHS) Heat Zone 9 while the other two were in AHS Heat Zones 10 and 11. Growth, onset date of flowering, and number of flowers at peak flowering varied by site. With few exceptions, plants tended to reach peak flowering at about the same time. Flower diameter varied by seed source with TEX>NFL>CFL. While TEX plants were perceived as the showiest, NFL and CFL plants persisted longer under the low input conditions in Florida, and hence provided some evidence of adaptation to regional site conditions.

Full access

Recent concerns over the environmental impact of peat harvesting have led to restrictions on the production of peat in Florida and other areas. The objectives of this study were to evaluate the use of composted dairy manure solids as a substitute for sphagnum or reed-sedge peat in container substrates on the growth of Solenostemon scutellarioides L. Codd ‘Wizard Velvet’, Tagetes patula L. ‘Safari Queen’, and Begonia ×hybrida ‘Dragon Wing Red’ and to examine the nutrient content in leachate from pots. Plants were grown for 5 weeks in a greenhouse in 15-cm plastic pots with seven substrates containing various proportions of sphagnum peat (S) or reed-sedge peat (R) and composted dairy manure solids (C), each with 20% vermiculite and 20% perlite. Substrate composition had no effect on plant quality ratings, number of flowers, or root dry mass for any of the plant species evaluated. Substrate composition did not affect the growth index (GI) or shoot dry mass of S. scutellarioides ‘Wizard Velvet’ or the GI of T. patula ‘Safari Queen’. However, growth of B. ×hybrida ‘Dragon Wing Red’ (GI and shoot dry mass) and T. patula ‘Safari Queen’ (shoot dry mass only) was highest in the 3S:0R:0C substrate. The substrates containing sphagnum peat and/or composted dairy manure solids (3S:0R:0C, 2S:0R:1C and 1S:0R:2C) had the highest NH4-N losses through the first 7 d of production. The 0S:3R:0C substrate had the highest initial leachate NO3+NO2-N losses and this trend persisted throughout most of the production cycle. Significantly more dissolved reactive phosphorus was leached from substrate mixes containing composted dairy manure solids than mixes containing only sphagnum or reed-sedge peat materials through 19 d after planting. All substrates tested as part of this study appeared to be commercially acceptable for production of container-grown bedding plant species based on plant growth and quality. However, nutrient losses from the containers differed depending on the peat or peat substitute used to formulate the substrates.

Free access