Search Results

You are looking at 51 - 53 of 53 items for

  • Author or Editor: Youbin Zheng x
Clear All Modify Search

Phytotoxic responses of five container-grown nursery species (Spiraea japonica ‘Goldmound’, Hydrangea paniculata ‘Grandiflora’, Weigela florida ‘Alexandra’, Physocarpus opulifolius ‘Summer Wine’, and Salix integra ‘Hakura Nishiki’) to chlorinated irrigation water and critical free chlorine thresholds were evaluated. Plants were overhead-irrigated with water containing 0, 2.5, 5, 10, and 20 mg·L−1 of free chlorine for 6 weeks. The following measurements were used to assess the treatments: visual injury, growth, leaf chlorophyll content index, leaf chlorophyll fluorescence, leaf net CO2 exchange rate, and stomatal conductance. All species exhibited one or more signs of chlorine injury, including foliar necrotic mottling, foliar necrosis and chlorosis, decreased plant height, and increased premature abscission of foliage with species varying in sensitivity to free chlorine concentrations of irrigation water. The results indicated that the critical free chlorine threshold of S. japonica, H. paniculata, W. florida, and S. integra was 2.5 mg·L−1 and 5 mg·L−1 for P. opulifolius. Our results suggested that irrigation water containing free chlorine less than 2.5 mg·L−1 should not adversely affect the growth or appearance of ornamental woody shrubs.

Free access

Until recently, most clonal cannabis (Cannabis sativa) has been propagated using fluorescent lights. Transitioning to light-emitting diodes (LEDs) may be a viable alternative to fluorescent lighting, enabling cultivators to provide specific spectrum treatments to enhance rooting while also saving energy. Vegetative stem cuttings of ‘Gelato-27’, ‘Grace’, and ‘Meridian’ were rooted for 15 days under various combinations of blue (B), red (R), ultraviolet-A (UVA) LEDs, phosphor-converted white (W) LEDs, and a fluorescent (F) control treatment, each with a canopy-level photosynthetic photon flux density (PPFD) of 200 µmol·m−2·s−1 and 16-hour photoperiod. The photon flux ratios of blue (B; 400–500 nm) and red (R; 600–700 nm) narrowband LED treatment combinations were (1) BR, fixed spectrum of B15:R85; (2) B, B75:R25 on day 0–2 followed by B15:R85 on day 2–14; (3) B+UVA, B75:R25 on day 0–2 followed by B15:R85 on day 2–14 plus 15 µmol·m−2·s−1 of UVA on day 7–14; (4) B50, B15:R85 on day 0–7 followed by B50:R50 on day 7–14. The W and F treatments both had static spectra. After the propagation period (i.e., plug stage), a portion of the cuttings under each treatment × cultivar combination were destructively harvested and the remainder were transplanted and grown vegetatively for an additional 21 days (i.e., transplant stage) under a PPFD of ≈275 µmol·m−2·s−1 from ceramic metal halide fixtures and then destructively harvested. Although there were no spectrum treatment effects on the percentage of cuttings that rooted, root index values were higher in cuttings grown under B+UVA vs. F. Further, relative root dry weights of plugs from the B, B+UVA, B50, and F treatments were higher than the W treatment. At the end of the plug stage, there were no spectrum treatment effects on the chlorophyll content index, cuttings grown under the B treatment had thicker stems compared with BR and W treatments, and cuttings grown under the F treatment exhibited the lowest percentage of new aboveground growth. None of the aforementioned spectrum treatment effects from the propagation stage persisted post-transplant. The use of LEDs is a promising, energy-efficient alternative to fluorescent lighting for cannabis propagation and B-enhanced spectrum treatments appear to enhance the rooting performance of clonal cannabis cuttings.

Open Access

There is a potentially large market for locally produced organic bitter melons (Momordica charantia L.) in Canada, but it is a great challenge to grow this warm-season crop in open fields (OFs) due to the cool and short growing season. To test the feasibility of using high tunnels (HTs) for organic production of bitter melons in southern Ontario, plant growth, fruit yield and quality, and pest and disease incidence were compared among three production systems: OF, HT, and high tunnel with anti-insect netting (HTN) at Guelph in 2015. The highest marketable fruit yield was achieved in HTN (≈36 t·ha−1), followed by HT (≈29 t·ha−1), with the lowest yield obtained in OF (≈3 t·ha−1). Compared with OF, there were several other benefits for bitter melon production in HT and HTN: increased plant growth, advanced harvest timing, reduced pest numbers and disease incidence, and improved fruit quality traits such as increased individual fruit weight and size, and reduced postharvest water loss. In addition to higher yield, HTN had fewer insect pests and disease incidence compared with HT. The results suggest that HTs can be used for organic production of bitter melon in southern Ontario and regions with similar climates. Also, the addition of anti-insect netting to HTs is beneficial to production if combined with an effective pollination strategy.

Free access