Search Results
There are a limited number of peach and nectarine cultivars available with chilling requirements that perform well in the Gulf Coast area of Alabama. A test planting of 40 peach and 13 nectarine cultivars was established in 1985 at the Gulf Coast Substation at Fairhope, Ala. The plot was prepared and trees grown according to commercial procedures. Blocks of four trees of each cultivar were planted on a 6 x 6-m spacing. Chill hours were calculated each year based on number of hours at or below 7.3 °C; starting from and including the first 10 consecutive days a total of 50 hours were accumulated to 15 Feb. Data collected included date of full bloom, first harvest date, and total yield. Fruit were measured or rated for skin color, attractiveness, firmness, stone freeness, pubescence, flesh color, dessert quality, shape, weight, percentage with split pits, and occurrence of malformed sutures and extended tips. All cultivars were evaluated for 9 years (1987–95). The best performing varieties are discussed.
Thirteen rootstocks grafted with Redhaven peach were established on a severe peach tree short-life (PTSL) site in central Georgia. Most rootstocks tested were peach seedling types: Lovell, Nemaguard, Guardian (BY520-9), BY520-8, Boone County, Bailey and two `Tennessee Natural' selections. A seedling plum rootstock, St. Julian, was also used. Clonal type rootstocks included a peach × almond hybrid, GF677; plum, GF43 and Damas 1869; and a plum hybrid, GF655-2. Trees on Guardian displayed the best survival with only 20% mortality due to PTSL, through 7 years. In contrast, 40% of trees on Lovell succumbed to PTSL. Currently, Lovell is the recommended rootstock for PTSL-prone sites. Other rootstocks ranged from 50% to 100% mortality due to PTSL. Trees on Guardian displayed significantly higher vigor through the first 4 years following planting compared to trees on Lovell. Furthermore, trees on Guardian produced significantly greater yields than those on Lovell, in all but 1 year. Rootstock effects on tree survival, vigor, bloom and harvest dates, fruit yield and size, and suckering will be discussed.
Nearly 5000 seedling trees representing more than 100 peach [Prunus persica (L.) Batsch.] and plum (Prunus spp.) lines were planted at a 4 × 0.6-m spacing in Jan. 1983, on a site with a known history of peach tree short life (PTSL) and Armillaria root rot (ARR). Trees were arranged in a randomized complete-block with eight replicates of six trees each. Beginning in Spring 1984 and each year thereafter the cause of tree death was determined. At the end of 9 years, 50% of the trees had succumbed to PTSL and 35% had been killed by ARR apparently caused by Armillaria tabescens. Analysis of the data for trees killed by ARR showed a wide range in mortality, some peach lines appeared significantly more tolerant to ARR than others. Plum lines derived from native North American species also appeared to be a potential source of improved tolerance. We did not establish whether ARR tolerance is affected by PTSL.
Two field experiments were conducted to assess peach (Prurus persica L.) cultivar susceptibility to the three Botryosphaeria spp. that cause peach tree fungal gummosis. Inoculated trees were evaluated for disease severity by rating gum exudation, vascular discoloration, and fungal colonization. Each severity measurement yielded a different rank ordering of cultivars for susceptibility. However, in a greenhouse study, these same measurements gave consistent rankings for aggressiveness of the fungal species on `Blake'. Despite large differences in disease severity in the greenhouse study, none of the severity measures were correlated with tree growth after inoculation. The only factor significantly correlated with growth rate of the trees after inoculation was growth rate before inoculation.
Abstract
‘Bounty’ peach [Prunus persica (L.) Batsch] was released because of its large fruit size, excellent flavor (as judged by us), and productivity, particularly under dry soil conditions of eastern Texas. Its ability to produce fruit of uniform maturity throughout the canopy makes it especially suitable for once-over harvesting. ‘Bounty’ has outstanding potential as a mid-season fresh-market peach for the south-central United States, particularly Texas, and is suggested for trial in the mid-Atlantic and eastern United States.
This paper describes the climatic and cropping conditions in the major peach [Prunus persica (L.) Batsch] producing areas in the southeastern United States in 1996. The peach and nectarine crop was the smallest since 1955 due to a series of unusually cold temperatures in February, March, and April. Crop set was not strictly a function of late blooming. No variety produced a full crop across the region. Many reputedly hardy peaches cropped poorly. The only peach or nectarine varieties that produced substantial crops in multiple locations were `La Premiere', `Ruston Red', and `Contender'. Cropping ability of some breeding selections shows that peach frost tolerance may be improved further.
Diploid plums (Prunus L. sp.) and their progenitor species were characterized for randomly amplified polymorphic DNA polymorphisms. Bootstrap analysis indicated the variance of genetic similarities differed little when the sample size was >80 markers. Two species from China (Prunus salicina Lindl. and P. simonii Carr.) and one species from Europe (P. cerasifera Ehrh.) contributed the bulk (72% to 90%) of the genetic background to the cultivated diploid plum. The southeastern plum gene pool was more diverse than those from California, Florida, or South Africa because of the greater contribution of P. cerasifera and P. angustifolia Marsh. to its genetic background.
Long-term field trials of a wide range of peach [Prunus persica (L.) Batsch] germplasm on two peach tree short-life (PTSL) sites revealed marked differences in survival among lines. Generally, cuttings and seedlings of a given line performed similarly, as did ungrafted seedlings and their counterparts grafted to a commercial cultivar. No apparent relationship existed between a line's chilling requirement and survival. B594520-9 survived best in Georgia and South Carolina, providing significantly greater longevity than Lovell, the standard rootstock for use on PTSL sites. B594520-9 is derived from root-knot-nematode-resistant parentage, and progeny of surviving seedlings have demonstrated root-knot resistance similar to Nemaguard seedlings.