Search Results

You are looking at 51 - 60 of 65 items for

  • Author or Editor: John M. Ruter x
Clear All Modify Search

American beautyberry (Callicarpa americana) is a deciduous shrub native to the southeast United States and is grown primarily for its metallic-purple fruit that develop in the fall. There are also pink- and white-fruiting and variegated forms but these traits are rare in nature and there is no information available regarding their inheritance. Also, there is confusion regarding self-compatibility and the presence of apomixis in Callicarpa L. Crosses were performed to investigate the genetics of fruit color, self-compatibility, and apomixis in american beautyberry. Test crosses between C. americana (CA) and C. americana ‘Lactea’ (CAL) suggested that white fruit is recessive to purple. White fruit appears to be controlled by a single recessive gene for which we propose the name white fruit and the gene symbol wft. Although there were only a limited number of progeny grown, crosses between CA and ‘Welch’s Pink’ suggest that purple is dominant to pink. Test crosses between CAL and ‘Welch’s Pink’ are needed to draw conclusions; however, we propose that purple, pink, and white fruit are controlled by an allelic series for which we suggest the gene symbols Wft > wft p > wft. Segregation ratios suggested that all progeny in the study developed through sexual hybridization. All genotypes used in the current study were self-compatible.

Free access

Illiciums, or star-anises, have increased in popularity in the nursery and landscape industries. However, confusion exists as to which taxa are tolerant of high light intensities during production and subsequent establishment in the landscape. We investigated the effect of two light intensity treatments, 45% and 100% full sunlight, on gas-exchange parameters of five Illicium taxa: Illicium anisatum L., I. floridanum Ellis. `Pebblebrook', I. henryi Diels., I. lanceolatum A.C. Sm., and I. parviflorum Michx. Ex. Vent. `Forest Green'. Light-response curves were determined for individual leaves, and mean response parameters calculated. Chlorophyll and total carotenoids were analyzed after extraction in acetone, with total chlorophyll also estimated with a SPAD chlorophyll meter. In general, highest rates of CO2 assimilation (Amax) and lowest rates of dark respiration (Rd) were found in the 45% light treatment for all taxa. Both Illicium anisatum and I. floridanum `Pebblebrook' had substantial reductions in Amax in 100% light, 94% and 81% respectively, compared to plants grown in the 45% light treatment. Illicium henryi failed to survive the 100% light treatment. Illicium lanceolatum and I. parviflorum `Forest Green' were least affected by the 100% light treatment. Severe photooxidative bleaching was noted and confirmed by SPAD and pigment data, although SPAD readings were a poor predictor of total chlorophyll. For taxa of Illicium in our study, photosynthetic gas-exchange parameters and foliage pigment characteristics were improved in the low light treatment, suggesting optimal growth occurs in shaded conditions.

Free access

Hibiscus acetosella Welw. ex Hiern. ‘Panama Red’ PP20,121 (Malvaceae) has generated public and grower interest due to its attractive red foliage and vigorous growth, however, a horticultural goal is to develop more compact forms. Even though organs of induced polyploids are often larger than the wild type, whole plants are often shorter in stature. Three studies were conducted to induce polyploidy and to evaluate the growth and reproductive potential of the resulting polyploids. In study 1, seeds were soaked for 24 hours in aqueous solutions of 0%, 0.2%, 0.4%, or 0.5% colchicine (w/v) plus 0.5% dimethyl sulfoxide. In studies 2 and 3, apical meristems of seedlings at the cotyledon stage were treated for 1 or 3 days with 0, 50, 100, or 150 μm oryzalin solidified with 0.8% agar. Visual observations and measurement of guard cells were used to identify plants that potentially had their chromosome number doubled. Flow cytometry of nuclei stained with DAPI was used for confirmation of polyploidy. No induced polyploidy was observed following seed treatment with colchicine at the rates and duration used in this study. One-time application of 50 μm oryzalin resulted in a single mixoploid (4x + 8x) in which the ploidy of the L-I, L-II, and L-III histogenic layers were identified as a 4–4-4 + 8, respectively. Three-day applications with 100 and 150 μm oryzalin resulted in an octoploid (8x) and a mixoploid (4x + 8x), respectively. The mixoploid from the 3-day treatment stabilized at the 8x level before flowering, but was identified as a 4 + 8-x-4 cytochimera. Plant height was reduced, leaves were smaller, internodes were shorter, and canopy volume was reduced in the octoploid (8x) form compared with the tetraploid (4x) form. Furthermore, in contrast to the tetraploid, the octoploid produced no self-pollinated seed and performed poorly as a staminate and pistillate parent in controlled crosses. This represents the first time oryzalin has been reported to induce polyploidy in Hibiscus L. section Furcaria DC. H. acetosella is an allotetraploid species with the genome composition AABB. The resulting autoallooctoploid (AAAABBBB) form of ‘Panama Red’ exhibits a more compact habit and reduced production of seed.

Free access

Acer rubrum `October Glory' has grown well in field studies across the southeastern United States. However, there is limited information on container production for this cultivar. Our objective was to evaluate first-year growth of container-grown `October Glory' at three locations with dissimilar climates in Georgia and Alabama. Rooted cuttings were planted in no. 3 containers at one location in Apr. 1995. Trees were transported the second week of June to Blairsville, Ga.; Auburn, Ala.; and Tifton, Ga. Trees were grown for 6 months until dormant and were harvested at the end of December. Location had no impact on final plant height increase (Blairsville, Auburn, and Tifton, 59.8, 53.0, and 60.2 cm, respectively). Increases in stem diameter and shoot dry mass were greatest at Tifton (8.4 mm, 17.5 g) and least at Blairsville (6.3 mm, 9.2 g), with Auburn similar to both locations (6.8 mm, 12.2 g). Root dry masses and root: shoot ratios were greatest in Tifton (17.2 g, 0.967), with no differences between Blairsville (4.9 g, 0.508) and Auburn (7.0 g, 0.641). Despite climatic dissimilarities, among locations, producers of container-grown `October Glory' could expect similar growth during the first year throughout Georgia and Alabama.

Full access

In response to a mail survey of the landscape maintenance and lawn care (LM-LC) industry in metropolitan Atlanta, we learned that 76% of respondents fertilized lawns and turf and 68% fertilized ornamental beds. Less than one-fourth of those who provided fertilization services offered an organic fertility option; for those who reported an organic option, an average of 25% of their residential customers used such a service. Complete fertilizers (N-P2O5-K2O), ammonium nitrate, urea, and N solutions were the products applied by most respondents. Average amounts of N per application were ≈1.5 lb/1000 ft2 on lawns and 1.1 lb/1000 ft2 on ornamentals. Of firms that provide fertilization services, 88% use a predetermined application schedule, whereas 88% use visual observation and 69% use soil testing to guide fertilizer management. Only 5% reported using tissue analysis as a fertilizer management strategy. Nitrogen fertilizers were applied most frequently in the spring, with nearly equal amounts applied in summer and fall. Phosphorus was applied most commonly in the fall or spring. Relatively few firms reported applying significant amounts of either N or P in winter. Most respondents indicated that they received adequate information about fertilizers, but few received information about organic fertilization. Commercial sales representatives and trade magazines were cited most often as sources of information; university specialists were the least-cited formal source of information concerning fertilization. We have suggested some research and educational issues to be addressed based on these results.

Full access

On 1 May 2004, a 4 × 2 split-plot experiment was initiated in Athens, Ga., on Rhododendron ×kurume `Pink Pearl'. The four main-plot treatments were low irradiance, low irradiance May–October, low irradiance November–May, and high irradiance (high and low correspond to average daily PPF of 23.6 and 10.4 mol·m-2·d-1). The two subplot fall fertigation treatments were 75 mg·L-1 of nitrogen (N) and 125 mg·L-1 N. Plant stem tissue was harvested monthly from November to March, and analyzed for freeze resistance (LT50). Maximum quantum efficiency of PSII (Fv/Fm) was analyzed monthly with a Mini-pam photosynthesis yield analyzer. No interactions existed between fertilizer application and light intensity and the 125 mg·L-1 N fertilizer treatment reduced freeze resistance of azalea stems throughout the study. Fall fertilization had no effect on fluorescence and no interactions existed between fertilizer and irradiance treatments. In November, plants that received low irradiance May–October were less freeze-resistant than plants from the high-irradiance treatment. However, in January, plants that received low irradiance throughout the study were more freeze-resistant than plants that received the high-irradiance treatment. In November, Fv/Fm was higher in the low irradiance and low irradiance November–May treatments. In February and March, Fv/Fm was lower in the low May–November treatment that received low irradiance during summer than the low November–May treatment that received low winter irradiance. The use of shade to reduce irradiance may delay the acquisition of freeze resistance in fall. However, shade may reduce photosystem damage and increase a plants ability to acquire and maintain greater freeze resistance.

Free access

In five experiments, singlenode cuttings of `Red Cascade' miniature rose (Rosa) were treated with a basal quick-dip (prior to insertion into the rooting substrate) or sprayed to the drip point with a single foliar application (after insertion) of Dip `N Grow [indole-3-butyric acid (IBA) + 1-naphthaleneacetic acid (NAA)], the potassium salt of indole-3-butyric acid (K-IBA), or the potassium salt of 1-naphthaleneacetic acid (K-NAA); a single foliar spray application of Dip `N Grow with and without Kinetic surfactant; or multiple foliar spray applications of Dip `N Grow. Spray treatments were compared with their respective basal quick-dip controls {4920.4 μm [1000 mg·L-1 (ppm)] IBA + 2685.2 μm (500 mg·L-1) NAA, 4144.2 μm (1000 mg·L-1) K-IBA, or 4458.3 μm (1000 mg·L-1) K-NAA}. Cuttings sprayed with 0 to 246.0 μm (50 mg·L-1) IBA + 134.3 μm (25 mg·L-1) NAA, 0 to 207.2 μm (50 mg·L-1) K-IBA, or 0 to 222.9 μm (50 mg·L-1) K-NAA resulted in rooting percentages, total root length, percent rooted cuttings with shoots, and shoot length similar to or less than control cuttings. Exceptions were cuttings sprayed with 0 to 2.23 μm

(0.5 mg·L-1) K-NAA, which exhibited shoot length greater than the control cuttings. Addition of 1.0 mL·L-1 (1000 ppm) Kinetic organosilicone surfactant to spray treatments resulted in greater total root length and shoot length. Repeated sprays (daily up to seven consecutive days) had no or negative effects on root and shoot development.

Full access

Japanese-cedar has been underused in landscapes of the United States until recent years. There are now over 100 cultivars, many of which are grown in the southeast of the United States. Performance of cultivars has been described from U.S. Department of Agriculture (USDA) Zone 6b to USDA Zone 7b; however, there are no reports on how cultivars perform in USDA Zone 8. The current study was conducted to measure chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content and assign visual color ratings to determine if there was a relationship between pigment values and perceived greenness, which generally is regarded as a desirable and potentially heritable trait. Total chlorophyll (P = 0.0051), carotenoids (P = 0.0266), and the ratio of total chlorophyll to carotenoids (P = 0.0188) exhibited a positive relationship with greenness after accounting for season and tree effects. In contrast, the ratio of chlorophyll a to chlorophyll b did not have an effect on greenness. There was a linear relationship between total chlorophyll and carotenoid regardless of season (summer R 2 = 0.94; winter R 2 = 0.88) when pooled across 2 years. The observed correlation between chlorophyll and carotenoid content suggests they could be used interchangeably as predictors of greenness. There were large differences in rainfall between the 2 years that may have resulted in additional variation. Furthermore, the climate in which the evaluation was conducted differs greatly from the native distribution of japanese-cedar occurring in China and Japan.

Free access

Paclobutrazol at 0 and 750 μl·liter–1 was sprayed on shoots of Feijoa sellowiana O. Berg. and Ligustrum japonicum Thunb. grown under similar production regimes in central Arizona (subtropical desert) and southern Georgia (humid temperate). Five months after application, Feijoa and Ligustrum leaves were generally smaller and thicker in Arizona than in Georgia. Arizona leaves were thicker than those in Georgia because of more layers of palisade and spongy mesophyll cells. Compared with leaves from control plants, paclobutrazol 1) increased Feijoa leaf area in Georgia, 2) decreased Ligustrum leaf area at both locations by ≈50%, and 3) decreased leaf thickness of both species in Arizona. Arizona Feijoa leaves had trichomes on adaxial and abaxial surfaces, whereas Georgia Feijoa leaves had trichomes on abaxial surfaces only. Paclobutrazol increased trichome frequency on adaxial surfaces of Arizona Feijoa leaves. Stomatal frequency of Georgia Feijoa leaves was about doubled by paclobutrazol. Reflectance of near-infrared radiation by paclobutrazol-treated Feijoa leaves was 1.4 times higher than that of nontreated leaves in Georgia and 1.9 times in Arizona. Near-infrared reflectance by Georgia Ligustrum leaves was 1.3 times higher than by Arizona Ligustrum leaves and was not affected by paclobutrazol. Leaf reflectance of photosynthetically active radiation (PAR) by Arizona Feijoa was higher than by Georgia Feijoa. Paclobutrazol increased PAR reflectance by Arizona Feijoa leaves. In contrast, Georgia Feijoa PAR reflectance was decreased by paclobutrazol. Paclobutrazol or location did not affect Ligustrum PAR reflectance. Chemical name used: (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol).

Free access