Search Results

You are looking at 51 - 59 of 59 items for

  • Author or Editor: Jianjun Chen x
Clear All Modify Search
Free access

Pachanoor S. Devanand, Jianjun Chen, Richard J. Henny and Chih-Cheng T. Chao

Philodendrons (Philodendron Schott) are among the most popular tropical ornamental foliage plants used for interior decoration. However, limited information is available on the genetic relationships among popular Philodendron species and cultivars. This study analyzed genetic similarity of 43 cultivars across 15 species using amplified fragment length polymorphism (AFLP) markers with near infrared fluorescence labeled primers. Forty-eight EcoR I + 2/Mse I + 3 primer set combinations were screened, from which six primer sets were selected and used in this investigation. Each selected primer set generated 96 to 130 scorable fragments. A total of 664 AFLP fragments were detected, of which 424 (64%) were polymorphic. All cultivars were clearly differentiated by their AFLP fingerprints, and the relationships were analyzed using the unweighted pair-group method of arithmetic average cluster analysis (UPGMA) and principal coordinated analysis (PCA). The 43 cultivars were divided into five clusters. Cluster I comprises eight cultivars with arborescent growth style. Cluster II has only one cultivar, `Goeldii'. There are 16 cultivars in cluster III, and most of them are self-heading interspecific hybrids originated from R.H. McColley's breeding program in Apopka, Fla. Cluster IV contains 13 cultivars that exhibit semi-vining growth style. Cluster V has five cultivars that are true vining in morphology, and they have lowest genetic similarity with philodendrons in other clusters. Cultivated philodendrons are generally genetically diverse except the self-heading hybrids in cluster III that were mainly developed using self-heading and semi-vining species as parents. Seven hybrid cultivars have Jaccard's similarity coefficients of 0.88 or higher, suggesting that future hybrid development needs to select parents with diverse genetic backgrounds.

Free access

Jianjun Chen, Xiaoming Wang, Neng Cai, Yongxin Li, Huijie Zeng and Zhongquan Qiao

Free access

Xiaoming Wang, Jianjun Chen, Yongxin Li, Huijie Zeng, Neng Cai and Zhongquan Qiao

Free access

Amy L. Shober, Christine Wiese, Geoffrey C. Denny, Craig D. Stanley, Brent K. Harbaugh and Jianjun Chen

Recent concerns over the environmental impact of peat harvesting have led to restrictions on the production of peat in Florida and other areas. The objectives of this study were to evaluate the use of composted dairy manure solids as a substitute for sphagnum or reed-sedge peat in container substrates on the growth of Solenostemon scutellarioides L. Codd ‘Wizard Velvet’, Tagetes patula L. ‘Safari Queen’, and Begonia ×hybrida ‘Dragon Wing Red’ and to examine the nutrient content in leachate from pots. Plants were grown for 5 weeks in a greenhouse in 15-cm plastic pots with seven substrates containing various proportions of sphagnum peat (S) or reed-sedge peat (R) and composted dairy manure solids (C), each with 20% vermiculite and 20% perlite. Substrate composition had no effect on plant quality ratings, number of flowers, or root dry mass for any of the plant species evaluated. Substrate composition did not affect the growth index (GI) or shoot dry mass of S. scutellarioides ‘Wizard Velvet’ or the GI of T. patula ‘Safari Queen’. However, growth of B. ×hybrida ‘Dragon Wing Red’ (GI and shoot dry mass) and T. patula ‘Safari Queen’ (shoot dry mass only) was highest in the 3S:0R:0C substrate. The substrates containing sphagnum peat and/or composted dairy manure solids (3S:0R:0C, 2S:0R:1C and 1S:0R:2C) had the highest NH4-N losses through the first 7 d of production. The 0S:3R:0C substrate had the highest initial leachate NO3+NO2-N losses and this trend persisted throughout most of the production cycle. Significantly more dissolved reactive phosphorus was leached from substrate mixes containing composted dairy manure solids than mixes containing only sphagnum or reed-sedge peat materials through 19 d after planting. All substrates tested as part of this study appeared to be commercially acceptable for production of container-grown bedding plant species based on plant growth and quality. However, nutrient losses from the containers differed depending on the peat or peat substitute used to formulate the substrates.

Free access

Juanxu Liu, Min Deng, Richard J. Henny, Jianjun Chen and Jiahua Xie

This study established a method of regenerating Dracaena surculosa Lindl. ‘Florida Beauty’ through indirect shoot organogenesis. Bud, leaf, and stem explants were cultured on a Murashige and Skoog basal medium supplemented with N6-(2-isopentyl) adenine (2iP) at 12.3 and 24.6 μM with 3-indoleacetic acid (IAA) at 0, 1.1, and 2.3 μM, respectively, and 2iP at 36.9, 49.2, 61.5, and 73.8 μM with IAA at 1.1 and 2.3 μM, respectively. Calluses were induced from leaf explants but failed to produce adventitious shoots. Calluses were also induced from stem and bud explants cultured on the basal medium containing 12.3 μM 2iP and 2.3 μM IAA, 24.6 μM 2iP or higher with either 1.1 or 2.3 μM IAA. The highest callus induction frequency was 63.2% from stem explants and 69.6% from bud explants when they were cultured on the basal medium supplemented with 49.2 μM 2iP and 2.3 μM IAA. The highest shoot formation frequency was 65.7% from stem-derived callus cultured on the basal medium containing 61.5 μM 2iP and 1.1 μM IAA and 88% from bud-derived callus cultured with 49.2 μM 2iP and 1.1 μM IAA. The highest number of shoots per piece of stem- and bud-derived calluses was 3.8 and 6.7, respectively. Adventitious shoots developed better root systems in the basal medium supplemented with 2.0 μM IAA. Plantlets after transplantation into a soilless substrate grew vigorously in a shaded greenhouse under a maximum photosynthetic photon flux density of 300 μmol·m−2·s−1. Neither disease incidence nor somaclonal variants were observed in the regenerated population. This established method could be used for efficient micropropagation of D. surculosa, and the availability of tissue-cultured liners could reduce the dependency on imported cuttings, which often bring new or invasive pests into the United States.

Restricted access

Huijie Zeng, Yun Li, Jianjun Chen, Xiaoming Wang, Zhongquan Qiao, Yongxin Li, Neng Cai and Sisi Liu

Free access

Jianjun Chen, Richard C. Beeson Jr., Thomas H. Yeager, Robert H. Stamps and Liz A. Felter

Irrigation runoff water from a containerized landscape plant production bed was blended with rainwater from green house roofs in a constructed collection basin. Water from both the collection basin and an on-site potable well were characterized and used to grow foliage and bedding plants with overhead and ebb-and-flow irrigation systems. Over a 2-year period, a total of 18 foliage and 8 bedding plant cultivars were produced with plant growth and quality quantified. Alkalinity, electrical conductivity, hardness, and concentrations of nutrients of water from both sources were well within desired levels for greenhouse crop production. Turbidity and pH were relatively high from algal growth in the collection basin. However, substrate pH, irrigated by either water source, remained between 6 and 7 throughout the production periods. All plants at the time of finishing were of marketable sizes and salable quality independent of water source. No disease incidences or growth disorders related to water sources were observed. Results suggest that captured irrigation runoff blended with rainwater can be an alternative water source for green house crop production.

Free access

Jianjun Chen, Richard. J. Henny, Lance. S. Osborne, Russell D. Caldwell and Cynthia A. Robinson

Potted anthurium is becoming an important indoor flowering foliage plant because of its unique attractive appearance and continuous growth and flowering under interior conditions. However, an interior environment, with controlled optimal temperatures and relative humidity and living plants, is an ideal niche for pest development. Pests such as thrips and two-spotted spider mite on Anthurium have been great challenges to the interiorscape industry because many pesticides have been rigorously restricted for interior use. Thus, exploiting the genetic potential of cultivar resistance may be the best approach for the control of these pests. In this study, eight of the most popular Anthurium cultivars were evaluated for their resistance to a natural infestation of thrips (Hercinothrips femoralis) and two-spotted spider mite (Tetranychus urticae) under three light levels: 4, 8, and 16 μmol·m-2·s-1, temperatures of 23.8 to 26.7 °C and a relative humidity of 60%. Results indicated that significant resistant differences exist among cultivars. The cultivars most resistant to thrips were not the most resistant to mite and vice versa. Cultivars that exhibited moderate resistance to thrips were also moderately resistant to mite. Low light intensity appeared to be a factor influencing thrips infestation since control plants that grew under a light intensity of 200 μmol·m-2·s-1 had no observed thrips damage. On the other hand, two-spotted spider mite infestation was not influenced by light intensity.

Restricted access

Phu-Long Pham, Ying-Xue Li, He-Rong Guo, Rui-Zhen Zeng, Li Xie, Zhi-Sheng Zhang, Jianjun Chen, Qing-Lian Su and Qing Xia

Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicinal plant. It produces various phytochemicals, particularly polysaccharides, which have nutraceutical and pharmaceutical values. To increase its biomass production and polysaccharide content, our breeding program has generated a series of polyploid cultivars through colchicine treatment of protocorm-like bodies (PLBs). The present study compared two tetraploid cultivars, 201-1-T1 and 201-1-T2, with their diploid parental cultivar, 201-1, in an established in vitro culture system. Tetraploid ‘201-1-T1’ and ‘201-1-T2’ had shorter leaves and shorter and thicker stems and roots, and they produced higher biomass compared with the diploid cultivar. The length and width of stomata significantly increased, but stomatal density decreased in tetraploid cultivars. The PLB induction rates from the stem node explants of the tetraploid cultivars were significantly higher than those of diploid. However, the PLB proliferation of tetraploids was lower than that of the diploid. The mean number of plantlets regenerated from tetraploid PLBs was also lower than that of the diploid after 4 months of culture. Polysaccharide contents in stems, leaves, and roots of 6-month-old tetraploid plantlets were significantly higher than those of diploids. The polysaccharide content in the stem of ‘201-1-T1’ was 12.70%, which was a 2-fold increase compared with the diploid cultivar. Our results showed that chromosome doubling could be a viable way of improving D. officinale in biomass and polysaccharide production.