Search Results

You are looking at 51 - 60 of 81 items for

  • Author or Editor: Carl Sams x
Clear All Modify Search

Dietary sources of selenium (Se) are associated with human health benefits, and Brassica species are good sources of Se in human diets. Selenium and S compete for absorption and accumulation in plant tissues; therefore, the ratios of Se to S in the growing environment determine the accumulation of selenium in plants. To determine responses for Brassica oleracea L., two levels of Na2SeO4 (96 mg·L−1 SeO4 2– and 0.384 mg·L−1 SeO4 2–) were added to nutrient solutions with or without MgSO4·7H2O (96 mg·L−1 SO4 2–). The highest plant fresh weight and S and SO4 2– accumulation were found when plants were grown in the medium with a SeO4 2– to SO4 2– ratio of 1 : 250 (0.384 mg·L−1 SeO4 2– and 96 mg·L−1 SO4 2–). However, the highest accumulation of Se was found when a low level of selenate (0.384 mg·L−1 SeO4 2–) was added to nutrient solutions without S. The activity of glutathione peroxidase (GPx) was regulated by Se status; the highest GPx activity was measured when a high level of SeO4 2– (96 mg·L−1) was supplied to nutrient solutions without S supplementation. The lowest concentration of total glucosinolates was found when adding SeO4 2– to nutrient solutions without S. We saw no difference in plant growth and mineral accumulation when plants were grown with K2SeO4 versus Na2SeO4, suggesting that the growth-inhibiting effect of Na2SeO4 was the result of the SeO4 2– rather than potentially toxic effects of Na+.

Free access

Fruit from five apple (Malus domestica Borkh.) cultivars were pressure-infiltrated at 103 kPa for 6 min with a 0%, 0.73%, 1.46%, 2.91%, or 5.82% (w/v) Ca-equivalent solution of CaCl2, Ca EDTA chelate, or buffered CaCl2 solution (Stopit). The fruit were stored at 0 ± 1C for 18 weeks and then evaluated for Ca content, firmness, and injury. Fruit treated with Ca chelate had no increase in fruit Ca content and were injured at all treatment levels. No significant differences occurred in fruit Ca levels between CaCl2 and Stopit treatments across all cultivars tested. Apples treated with Stopit were firmer than apples treated with CaCl2, when averaged across cultivars. Fruit Ca levels, firmness, and incidence of injury were positively correlated with concentrations of CaCl2 and Stopit for all cultivars.

Free access

High glucosinolate content in brassica meal is a limiting factor in consumption of rapeseed. In recent years canola cultivars of rapeseed with decreased glucosinolate content have been developed. However, environmental and nutritional factors are also believed to influence glucosinolate content. This study was conducted to determine the relationships among water stress, B nutrition, and glucosinolate content in canola. Two canola cultivars (`Cyclone' and `American A112') were grown in a continuously recirculating hydroponic system with modified Hoagland solution (0.6 ppm B). Water stress was induced gradually (2% per day using polyethylene glycol 8000) starting when plants were 4 weeks old. Osmotic potential was maintained at –0.1 MPa (high stress level), –0.085 MPa (medium stress), or 0.05 MPa (control). Treatments were arranged in a randomized incomplete-block design, with three blocks, four replications, two cultivars, and three treatments. Upper leaves (no. 15 and higher) were collected and analyzed by inductively coupled plasma emission spectrometry for B content. Total and indole glucosinolate content of seeds were measured colorimetrically and by HPLC. The leaf B content of stressed plants decreased by 55% in `Cyclone' and 29% in `American A112'. Total glucosinolate content increased 28% and 12%, respectively, in stressed plants of `Cyclone' and `American A112'. Indole glucosinolate content was 44% and 13% higher in the same plants. The interaction between cultivar and water stress was not significant for glucosinolate content but was significant for B content of the leaves.

Free access

The effects of organosilicone and more conventional hydrocarbon surfactants on postharvest radiolabeled calcium (Ca) and on Ca solution infiltration into `Golden Delicious' apples were examined to provide a direct and more efficient pressure infiltration technique to increase fruit Ca concentration. Both radiolabeled Ca infiltration and the proportional increase in fruit Ca estimated by fruit weight gain from Ca solutions of known concentration were significantly enhanced by a range of surfactants having differing chemical structures. Two organosilicone surfactants, Silwet L-77 and Silwet L-7604, known for their greater capacity to lower the surface tension of solutions than conventional hydrocarbon surfactants, were the best among the surfactants tested at augmenting Ca infiltration. Applications of surfactants to fruit were as effective or more effective when used as a pretreatment rather than by mixing with Ca solutions. The applied atmospheric pressure necessary to infiltrate Ca to levels considered sufficient to maintain fruit firmness and resist decay during storage could be lowered in fruit treated with organosilicone surfactants. Postharvest surfactant and Ca treatments may offer a practical means of increasing the Ca concentration of apple fruit.

Free access

`Golden Delicious' and `Red Rome' apples were pressure infiltrated (69 kPa for 2 or 4 min) at harvest with 0, 1, 2, 3 or 4%, and 0, 2, 4, 6 or 8% CaCl2 solutions (w/v), respectively, and placed in 0°C storage. Juice was extracted from the apples after 0, 2, 4 or 6 months in storage. Sensory evaluation of the juice was conducted to determine if CaCl2 concentration affected color, off-flavors, suspended particles or overall acceptability of the juice. Juice color was judged lighter with increased CaCl2 in both cultivars. Detection of off-flavors decreased as CaCl2 was increased in juice from `Red Rome'; whereas, off-flavors increased as CaCl2 was increased in `Golden Delicious' juice. CaCl2 treatments decreased suspended particles in both cultivars. As CaCl2 was increased overall acceptability of juice from `Red Rome' increased, while acceptability of juice from `Golden Delicious' decreased.

Free access

`Golden Delicious' and `Red Rome' apples were pressure infiltrated (69 kPa for 2 or 4 min) at harvest with 0, 1, 2, 3 or 4%, and 0, 2, 4, 6 or 8% CaCl2 solutions (w/v), respectively, and placed in 0°C storage. Juice was extracted from the apples after 0, 2, 4 or 6 months in storage. Sensory evaluation of the juice was conducted to determine if CaCl2 concentration affected color, off-flavors, suspended particles or overall acceptability of the juice. Juice color was judged lighter with increased CaCl2 in both cultivars. Detection of off-flavors decreased as CaCl2 was increased in juice from `Red Rome'; whereas, off-flavors increased as CaCl2 was increased in `Golden Delicious' juice. CaCl2 treatments decreased suspended particles in both cultivars. As CaCl2 was increased overall acceptability of juice from `Red Rome' increased, while acceptability of juice from `Golden Delicious' decreased.

Free access

Rapid cycling Brassica rapa L. were grown for 7 days in the presence of 11 levels of zinc (Zn) in hydroponic solution culture and evaluated for changes in Zn and glucosinolate (GS) content. Zinc levels were 0.05, 1, 5, 10, 25, 50, 75, 100, 125, 150, and 200 mg·L-1 Zn. Plants grown in solutions with ≥50 mg·L-1 Zn displayed severe Zn toxicity symptoms, grew little, or died and were not subsequently evaluated for GS content. Shoot Zn concentrations increased linearly with increasing Zn treatment levels. Gluconapin, which accounted for nearly 90% of the aliphatic GSs present, was the only aliphatic GS influenced by Zn, and decreased linearly with increasing Zn levels. Accumulation of glucobrassicin and 4-methoxyglucosbrassicin, both indole GSs, responded with a linear increase and quadratically, respectively, to Zn fertility. An aromatic GS, gluconasturtiin, was also influenced by Zn levels in solution, and had a quadratic response to increasing Zn. This suggested that Zn fertility can influence changes in GS that may affect flavor (bitterness, etc.) or medicinal attributes associated with the GS and their breakdown products, as well as elevate the nutritional status of Zn in the leaves of Brassica.

Free access

Vegetable crops can be significant sources of nutritionally important dietary carotenoids, and Brassica are sources that also exhibit antioxidant and anticarcinogenic activity. The family Brassicaceae contains a diverse group of plant species commercially important in many parts of the world. The six economically important Brassica species are closely related genetically. Three diploid species (B. nigra, B. rapa, B. oleracea) are the natural progenitors of the amphidiploid species (B. juncea, B. napus, B. carinata). The objective of this study was to characterize the accumulation of important dietary carotenoid pigments among the genetically related Brassica species. High-performance liquid chromatographic quantification revealed significant differences in carotenoid and chlorophyll pigment concentrations among the Brassica species. Brassica rapa accumulated the highest concentrations of antheraxanthin [0.79 mg/100 g fresh weight (FW)], lutein (8.89 mg/100 g FW), and zeaxanthin (0.75 mg/100 g FW). The highest concentrations of β-carotene (4.41 mg/100 g FW) and total chlorophyll (125.9 mg/100 g FW) were found in B. juncea. Brassica nigra accumulated the highest concentrations of 5,6-epoxylutein (0.41 mg/100 g FW) and violaxanthin (2.28 mg/100 g FW), whereas B. oleracea accumulated the highest concentrations of neoxanthin (2.10 mg/100 g FW). For many of the pigments analyzed, the amphidiploids B. carinata and B. napus accumulated significantly less carotenoid concentrations than the diploid species and B. juneca. Brassica convey unique health attributes when consumed in the diet. Identification of genetic relationships among the Brassica species would be beneficial information for improvement programs designed to increase carotenoid values.

Free access

`Golden Delicious' (`GD') and `Red Rome' (`RR') apples were pressure infiltrated at harvest with 0, 1, 2, 3 or 4% and 0, 2, 4, 6 or 8% CaCl2 solutions (w/v), respectively. Sauce was prepared after 0, 2, 4 and 6 months in 0°C storage. Sensory evaluation was conducted to determine the effects of CaCl2 concentration on color, off-flavors, consistency, uniformity of particles, and overall acceptability of the sauce. Sauce from `RR' was lighter while sauce from `GD' was darker with increased CaCl2. Calcium chloride increased the consistency of `RR' and `GD' sauce but the highest concentrations decreased the consistency of `GD' sauce. The uniformity of sauce particles from both cultivars decreased with increased CaCl2. The presence of off-flavors increased in `GD' sauce with the highest concentrations but decreased in `RR' sauce as CaCl2 was increased. Overall acceptability of sauce made from `RR' and `GD' increased as CaCl2 increased, however, acceptability of sauce made from `GD' decreased at the highest concentrations of CaCl2.

Free access

Selenium (Se) is an essential mammalian micronutrient. Adult humans have a daily requirement of 55 to 70 μg/day Se depending on sex and pregnancy/lactation for females. In addition, recent studies have shown health benefits with dietary Se supplementation of 100 to 200 μg/day Se. However, daily intakes in humans greater than 900 μg Se will result in toxicity called selenosis. Although not essential in plant nutrition, some species can bioaccumulate Se. Brassica and Allium species became prime candidates for Se enrichment because of their ability to accumulate and tolerate high concentrations of Se in edible tissues; however, there is now concern that these species are too efficient at selenization and overconsumption of their selenized tissues could result in selenosis. Herbal crop species are consumed regularly in the diet for their culinary flavor attributes. Basil (Ocimum basilicum L.) and cilantro (Coridandrum sativum L.) are not classified as Se accumulators. Therefore, a study was undertaken to determine the potential to selenize basil and cilantro through foliar Se applications to consistently supplement diets with nutritionally beneficial levels of Se. Plants of each species were grown in both growth chamber and field environments and treated with foliar applications (5 mL per plant) of selenate-Se and selenite-Se at concentrations of 0, 2, 4, 8, 16, and 32 mg·L−1 Se. Crops received three separate foliar applications at ≈5-day intervals beginning 24 to 28 days after planting for the growth chamber plants and 50 days after planning for the field environment. Selenium accumulation in both basil and cilantro leaf tissues increased linearly under both selenate-Se (P ≤ 0.001) and selenite-Se (P ≤ 0.001) foliar treatments in growth chamber and field evaluations. Maximum Se leaf tissue concentrations for basil and cilantro ranged from 13 to 55 μg·g−1 Se dry weight. Selenization of basil and cilantro is possible through foliar Se applications, and Se fortification of herbal crops may provide alternative delivery systems in human diets.

Free access