Search Results
The green industry has identified the use of biodegradable containers as an alternative to plastic containers as a way to improve the sustainability of current production systems. Field trials were conducted to evaluate the performance of four types of 1-gal nursery biocontainers [keratin (KR), wood pulp (WP), fabric (FB), and coir fiber (Coir)] in comparison with standard black plastic (Plastic) containers on substrate temperature, water use, and biomass production in aboveground nurseries. Locations in Kentucky, Michigan, Mississippi, and Texas were selected to conduct experiments during May to Oct. 2012 using ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla) and ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) in 2013. In this article, we were focusing on the impact of alternative container materials on hourly substrate temperature variations and plant growth. Substrate temperature was on an average higher (about 6 °C) in Plastic containers (about 36 °C) compared with that in WP, FB, and Coir containers. However, substrate temperature in KR containers was similar to Plastic. Substrate temperature was also influenced by local weather conditions with the highest substrate temperatures recorded in Texas followed by Kentucky, Mississippi, and Michigan. Laboratory and controlled environment trials using test containers were conducted in Kentucky to evaluate sidewall porosity and evaporation loss to confirm field observations. Substrate temperature was similar under laboratory simulation compared with field studies with the highest substrate temperature observed in Plastic and KR, intermediate in WP and lowest in FB and Coir. Side wall temperature was higher in Plastic, KR, and FB compared with WP and Coir, while side wall water loss was greatest in FB, intermediate in WP and Coir, and lowest in plastic and KR. These observations suggest that the contribution of sidewall water loss to overall container evapotranspiration has a major influence on reducing substrate temperature. The porous nature of some of the alternative containers increased water use, but reduced heat stress and enhanced plant survival under hot summer conditions. The greater drying rate of alterative containers especially in hot and dry locations could demand increased irrigation volume, more frequent irrigation, or both, which could adversely affect the economic and environmental sustainability of alternative containers.
The performance of biocontainers as sustainable alternatives to the traditional petroleum-based plastic containers has been researched in recent years due to increasing environmental concern generated by widespread plastic disposal from green industry. However, research has been mainly focused on using biocontainers in short-term greenhouse production of bedding plants, with limited research investigating the use of biocontainers in long-term nursery production of woody crops. This project investigated the feasibility of using biocontainers in a pot-in-pot (PIP) nursery production system. Two paper (also referred as wood pulp) biocontainers were evaluated in comparison with a plastic container in a PIP system for 2 years at four locations (Holt, MI; Lexington, KY; Crystal Springs, MS; El Paso, TX). One-year-old river birch (Betula nigra) liners were used in this study. Results showed that biocontainers stayed intact at the end of the first growing season, but were penetrated to different degrees after the second growing season depending on the vigor of root growth at a given location and pot type. Plants showed different growth rates at different locations. However, at a given location, there were no differences in plant growth index (PGI) or plant biomass among plants grown in different container types. Daily water use (DWU) was not influenced by container type. Results suggest that both biocontainers tested have the potential to be alternatives to plastic containers for short-term (1 year) birch production in the PIP system. However, they may not be suitable for long-term (more than 1 year) PIP production due to root penetration at the end of the second growing season.
As the green industry is moving toward sustainability to meet the demands of society, the use of biocontainers as alternatives to petroleum-based plastic containers has drawn significant attention. Field trials of seven plantable biocontainers (coir, manure, peat, rice hull, soil wrap, straw, and wood fiber) were conducted in 2011 and 2012 at five locations in the United States to assess the influence of direct-plant biocontainers on plant growth and establishment and the rate of container decomposition in landscape. In 2011, container type did not affect the growth of any of the three species used in this study with an exception in one location. The three species were ‘Sunpatiens Compact Magenta’ new guinea impatiens (Impatiens ×hybrida), ‘Luscious Citrus’ lantana (Lantana camara), and ‘Senorita Rosalita’ cleome (Cleome ×hybrida). In 2012, the effect of container type on plant growth varied with location and species. Cleome, new guinea impatiens, and lantana plants grown in coir and straw containers were in general smaller than those in peat, plastic, rice hull, and wood fiber containers. After 3 to 4 months in the field, manure containers had on average the highest rate of decomposition at 88% for all five locations and two growing seasons. The levels of decomposition of other containers, straw, wood fiber, soil wrap, peat, coir, and rice hull were 47%, 46%, 42%, 38%, 25%, and 18%, respectively, in descending order. Plantable containers did not hinder plant establishment and posttransplant plant growth. The impact of container type on plant growth was smaller compared with that of location (climate). Similarly, the impact of plant species on pot decomposition was smaller compared with that of pot material.
Penstemon, with more than 250 species native to North America, holds significant aesthetic and ecological value in Utah, supporting diverse pollinators. Despite their significance, the survival of penstemon is threatened by challenges such as habitat loss, climate change, and Utah’s naturally high soil salinity. To address these challenges and understand their adaptability, this study evaluated the salt tolerance of two penstemon species [Penstemon davidsonii (Davidson’s penstemon) and Penstemon heterophyllus (foothill penstemon)] under controlled greenhouse conditions. The aim was to develop baseline information for nursery production and landscape use that utilize reclaimed water for irrigation. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.0 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. Half of the plants were harvested after four irrigation events, and the remaining plants were harvested after eight irrigation events. At harvest, visual rating (0 = dead and 5 = excellent without foliage salt damage), plant width, number of shoots, leaf area, shoot dry weight, leaf greenness [Soil Plant Analysis Development (SPAD)], stomatal conductance, and canopy temperature were collected to assess the impact of salinity stress. In both species, salt damage was dependent on the salinity levels and length of exposure. After four irrigation events, both species exhibited foliage damage that increased in severity with rising EC. The most severe damage was observed in plants receiving saline solution at an EC of 10.0 dS·m−1. After eight irrigation events, P. davidsonii exposed to a saline solution with an EC of 10.0 dS·m−1 received a visual rating of 0, whereas P. heterophyllus had a visual rating of 0.4. Both species exhibited salinity-induced effects, with variations observed in the specific parameters and the degree of response. Penstemon davidsonii exhibited significant salinity stress, as indicated by reduced leaf area, shoot dry weight, SPAD reading, and stomatal conductance with increasing EC of the saline solution. In addition, in both species, at both harvests, canopy temperatures increased either linearly or quadratically by 8% to 36% as the EC levels of the saline solution increased. These results indicate that P. davidsonii was more sensitive to salinity stress than P. heterophyllus.
Maple syrup is a well-known natural sweetener made from the sap harvested from maple trees (Acer sp.). The North American scientific literature regarding maple syrup has predominantly originated in the Northeastern United States and Canada. However, the range of this Holarctic genus extends across the continent and all species produce sap with the potential for syrup production. This study focuses on two maple species commonly found in Northern Utah, namely the native boxelder (Acer negundo) and the introduced Norway maple (Acer platanoides). Thirty trees of each species were tapped in Cache Valley, UT, USA, on 19 Feb 2022, and measured for daily sap yield and sugar content until the season ended 37 days later on 27 Mar 2022. The same trees were re-tapped on 1 Mar 2023 and taps were removed 41 days later on 10 Apr 2023. Average 2022 sap yields were 22.1 L for boxelder and 7.5 L for Norway maple per tree. In 2023, average sap yields were 26.4 L for boxelder and 9.3 L for Norway maple per tree. Boxelder trees produced an average sap yield more than double that of Norway maple in both years. Sugar content was similar for both species ranging from 2.2% to 2.8%. Air temperatures were analyzed using data from Utah AgWeather System weather stations nearest to the trees, and air temperature had a significant impact on sap yield. It was found that an average daily air temperature of 0.5 °C and a daily air temperature difference of ∼10 °C with a minimum air temperature close to −5 °C and a maximum air temperature of ∼6 °C was the optimal condition for production. An analysis of the mineral nutrient concentrations in the sap and soil showed no correlation. These findings indicate that there is potential for using Utah’s maple species for syrup production.
Containers made from natural fiber and recycled plastic are marketed as sustainable substitutes for traditional plastic containers in the nursery industry. However, growers’ acceptance of alternative containers is limited by the lack of information on how alternative containers impact plant growth and water use (WU). We conducted experiments in Michigan, Kentucky, Tennessee, Mississippi, and Texas to test plant growth and WU in five different alternative containers under nursery condition. In 2011, ‘Roemertwo’ wintercreeper (Euonymus fortunei) were planted in three types of #1 (≈1 gal) containers 1) black plastic (plastic), 2) wood pulp (WP), and 3) recycled paper (KF). In 2012, ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla siebold var. koreana) was evaluated in 1) plastic, 2) WP, 3) fabric (FB), and 4) keratin (KT). In 2013, ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) was evaluated in 1) plastic, 2) WP, and 3) coir fiber (Coir). Plants grown in alternative containers generally had similar plant growth as plastic containers. ‘Roemertwo’ wintercreeper had high mortality while overwintering in alternative containers with no irrigation. Results from different states generally show plants grown in fiber containers such as WP, FB, and Coir used more water than those in plastic containers. Water use efficiency of plants grown in alternative containers vs. plastic containers depended on plant variety, container type, and climate.
As high-input systems, plant production facilities for liner and container plants use large quantities of water, fertilizers, chemical pesticides, plastics, and labor. The use of renewable and biodegradable inputs for growing aesthetically pleasing and healthy plants could potentially improve the economic, environmental, and social sustainability of current production systems. However, costs for production components to integrate sustainable practices into established systems have not been fully explored to date. Our objectives were to determine the economic costs of commercial production systems using alternative containers in aboveground nursery systems. We determined the cost of production (COP) budgets for two woody plant species grown in several locations across the United States. Plants were grown in plastic pots and various alternative pots made from wood pulp (WP), fabric (FB), keratin (KT), and coconut fiber (coir). Cost of production inputs for aboveground nursery systems included the plant itself (liner), liner shipping costs, pot, pot shipping costs, substrate, substrate shipping costs, municipal water, and labor. Our results show that the main difference in the COP is the price of the pot. Although alternative containers could potentially increase water demands, water is currently an insignificant cost in relation to the entire production process. Use of alternative containers could reduce the carbon, water, and chemical footprints of nurseries and greenhouses; however, the cost of alternative containers must become more competitive with plastic to make them an acceptable routine choice for commercial growers.
Increased urban and suburban populations in the arid western United States have resulted in more water demand; however, water availability in the region has become limited because of inadequate precipitation. Recent droughts have led to restrictions on irrigating landscape plants. Garden rose (Rosa ×hybrida) is commonly used as flowering plants in residential landscapes, but its drought tolerance has not been widely studied. The objective of this study was to determine the impact of reduced irrigation frequency on visual quality, plant growth, and physiology of five garden rose cultivars, including ChewPatout (Oso Easy® Urban Legend®), Meibenbino (Petite Knock Out®), MEIRIFTDAY (Oso Easy® Double Pink), Overedclimb (Cherry Frost™), and Radbeauty (Sitting Pretty™). Twenty-four plants of each rose cultivar were established in a trial plot at Utah Agricultural Experiment Station Greenville Research Farm (North Logan, UT, USA) in Summer 2021. Plants were randomly assigned to one of three deficit irrigation treatments for which irrigation frequencies were calculated using 80% reference evapotranspiration (ETO) (high), 50% ETO (medium), and 20% ETO (low). The total volumes of irrigation water applied to each plant were 345.6, 172.8, and 43.2 L for the high, medium, and low irrigation frequencies, respectively, during the deficit irrigation trial from 12 May to 30 Sep 2022. Root zones were wetted more frequently as irrigation frequency increased from low to high irrigation frequencies. Decreased irrigation frequency increased the number of visibly wilted and damaged leaves on all rose cultivars. However, only ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited a reduction in overall appearance under decreased irrigation frequency. The relative growth indices of both ‘Meibenbino’ and ‘MEIRIFTDAY’ decreased by 6%, whereas the dry weights of their leaves decreased by 37% and 36%, respectively, as irrigation decreased from high to low frequencies. Roses in this study appeared to decrease stomatal conductance up to 51% when irrigation decreased from high to low frequencies, or when air temperature increased. ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited unacceptable overall appearance, growth reduction, and higher leaf–air temperature differences, and they were less tolerant to reduced irrigation. Although the ‘Radbeauty’ maintained plant growth under the reduced irrigation frequency, the large leaf size led to a more visibly wilted appearance and the potential for heat stress, thus impairing visual quality. ‘ChewPatout’ and ‘Overedclimb’ were most tolerant to deficit irrigation at 20% ETO and maintained plant growth with acceptable visual quality and lower leaf temperatures when they received one irrigation during the growing season.