Search Results
You are looking at 41 - 50 of 50 items for
- Author or Editor: Lailiang Cheng x
Bench-grafted Fuji/M26 plants were fertigated with seven nitrogen concentrations (0, 2.5, 5.0, 7.5, 10, 15, and 20 mM) by using a modified Hoagland solution from 30 June to 1 Sept. In mid-October, half of the fertigated trees were sprayed with 3% urea twice at weekly intervals, while the other half were left as controls. The plants were harvested after natural leaf fall, stored at 2 °C, and then destructively sampled in January for reserve N and carbohydrate analysis. As N concentration used in fertigation increased, whole-plant reserve N content increased progressively with a corresponding decrease in reserve carbohydrate concentration. Foliar urea application increased whole-plant N content and decreased reserve carbohydrate concentration. The effect of foliar urea on whole-plant reserve N content and carbohydrate concentration was dependent on the N status of the plant, with low-N plants being more responsive than high-N plants. There was a linear relationship between the increase in N content and decrease in carbohydrate concentration caused by foliar urea, suggesting that part of the reserve carbohydrates was used to assimilate N from foliar urea. Regardless of the difference in tree size caused by N fertigation, the increase in the total amount of reserve N by foliar urea application was the same on a whole-tree basis, indicating that plants with low-N background were more effective in using N from urea spray than plants with high-N background.
Near-infrared (NIR) reflectance spectroscopy was used to determine the chemical composition of fruit and nut trees. Potted almond and bench-grafted Fuji/M26 trees were fertigated during the growing season with different N levels by modifying the Hoagland to create different levels of nitrogen and carbohydrates in plant tissues during dormancy. Dried, ground, and sieved shoot, shank, and root samples were uniformly packed into NIR cells and scanned with a Foss NIRSystem 6500 monochromator from 400 to 2500 nm. Statistical and multiple linear regression methods were used to derive a standard error of performance and the correlation between NIR reading and standard chemical composition analysis (anthrone, Kjedahl and Ninhydrin methods for carbohydrate, total N, and amino acid analysis, respectively) were determined. The multiple determination coefficients (R 2) of apple and almond tissues were 0.9949 and 0.9842 for total nitrogen, 0.9971 and 0.9802 for amino acid, and 0.8889 and 0.8687 for nonstructural carbohydrate, respectively.
Potted apple trees (Malus domestica L. `Gala') were drenched with either water or an antitranspirant (N-2001). After treatment, no additional water was applied to the plants. Abscisic acid (ABA) content of immature and mature leaves was determined by radioimmunoassay after 0, 1, 3, and 5 h and 1, 2, 4, 7, 8, and 9 days after treatment. ABA content of mature and immature leaves of antitranspirant-treated plants peaked 1 and 4 days after treatment, respectively, and remained constant thereafter. In contrast, with increasing water stress, the ABA content of mature and immature leaves of control plants without antitranspirant peaked at 7 and 8 days, respectively. The overall level of ABA in mature leaves of both treatment groups was significantly greater than in immature leaves. The water saturation deficit increased, water and turgor potentials of leaves decreased, and stomatal conductance decreased in response to antitranspirant application. The changes in water relations parameters and stomatal conductance were highly correlated with changes in leaf ABA content.
Own-rooted 1-year-old `Concord' grapevines (Vitis labruscana Bailey) were fertigated twice weekly for 11 weeks with 1, 10, 20, 50, or 100 μm iron (Fe) from ferric ethylenediamine di (o-hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. As Fe supply increased, leaf total Fe content did not show a significant change, whereas active Fe (extracted by 2,2′-dipyridyl) content increased curvilinearly. Chlorophyll (Chl) content increased as Fe supply increased, with a greater response at the lower Fe rates. Chl a: b ratio remained relatively constant over the range of Fe supply, except for a slight increase at the lowest Fe treatment. Both CO2 assimilation and stomatal conductance increased curvilinearly with increasing leaf active Fe, whereas intercellular CO2 concentrations decreased linearly. Activities of key enzymes in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in sucrose synthesis, cytosolic FBPase, all increased linearly with increasing leaf active Fe. No significant difference was found in the activities of ADP-glucose pyrophosphorylase (AGPase) and sucrose phosphate synthase (SPS) of leaves between the lowest and the highest Fe treatments, whereas slightly lower activities of AGPase and SPS were observed in the other three Fe treatments. Content of 3-phosphoglycerate (PGA) increased curvilinearly with increasing leaf active Fe, whereas glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and the ratio of G6P: F6P remained unchanged over the range of Fe supply. Concentrations of glucose, fructose, sucrose, starch, and total nonstructural carbohydrates (TNC) at both dusk and predawn increased with increasing leaf active Fe. Concentrations of starch and TNC at any given leaf active Fe content were higher at dusk than at predawn, but both glucose and fructose showed the opposite trend. No difference in sucrose concentration was found at dusk or predawn. The export of carbon from starch breakdown during the night, calculated as the difference between dusk and predawn measurements, increased as leaf active Fe content increased. The ratio of starch to sucrose at both dusk and predawn also increased with increasing leaf active Fe. In conclusion, Fe limitation reduces the activities of Rubisco and other photosynthetic enzymes, and hence CO2 assimilation capacity. Fe-deficient grapevines have lower concentrations of nonstructural carbohydrates in source leaves and, therefore, are source limited.
Bench-grafted `Fuji' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] trees on Malling 26 (M.26) rootstocks were fertigated for 6 weeks with N concentrations ranging from 0 to 20 mm. These treatments produced levels of leaf N ranging from 0.9 to 4.3 g·m-2. Over this range, leaf absorptance increased curvilinearly from 74.8% to 92.5%. The light saturation point for CO2 assimilation expressed on the basis of absorbed light increased linearly at first with increasing leaf N, then reached a plateau at a leaf N content of ≈3 g·m-2. Under high light conditions (photosynthetic photon flux of 1500 μmol·m-2·s-1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range, except for a slight decrease at the lower end. As leaf N increased, nonphotochemical quenching declined under high light, and there was an increase in the efficiency with which the absorbed photons were delivered to open PSII centers. The photochemical quenching coefficient remained high except for a decrease at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially going into singlet oxygen formation was estimated to be ≈10%, regardless of leaf N status. It was concluded that there was more excess absorbed light in low N leaves than in high N leaves under high light conditions. Nonphotochemical quenching was enhanced with decreasing leaf N to reduce both the PSII efficiency and the probability of damage from photooxidation by excess absorbed light.
The expression gti, or tissue ionic conductance, was proposed to describe the efflux of ions from leaf disks (Whitlow et al., 1992, Plant Physiology, 98:198-205). The objective of this study was to determine the effectiveness of the gti method to screen germplasm for heat and desiccation tolerance using representative selections of 5 Fragaria species. Leaf disks were exposed to 4 levels of heat, 25, 35, 45, and 55 C, and 4 levels of desiccation. 60, 70, 80 and 100% relative water content (RWC). F. virginiana glauca was consistently ranked as the leakiest in all treatments including controls, with gti values 70 to 100% higher than in the other species. Temperatures of 25 to 45 C did not influence gti over time. A temperature of 55 C was lethal to the tissue and, thus, the ion flux was initially very high but soon diminished. At 70% RWC F. virginiana glaucu tissue was the leakiest, and F. virginiana and F. vesca tissues were somewhat leakier than those of F. × ananassa and F. chiloensis. Differences among species diminished with time in bathing solutions.
Sorbitol (d-glucitol) is the major end product of photosynthesis in apple (Malus domestica Borkh.), as well as the predominant phloem-translocated carbohydrate. The mechanism by which sorbitol is phloem-loaded for transport to heterotrophic sink tissues is unknown. We hypothesized that a plasma membrane-bound H+/sorbitol symporter mediates apoplastic phloem-loading of sorbitol. To discover genes potentially encoding sorbitol transporters, a cDNA library was constructed from mature `Gala' apple leaves. A homologous probe was synthesized via PCR with primers were designed against the cherry fruit sorbitol transporter, PcSot1, and using library lysate as template. From an initial plating of approximately 5 × 105 clones, twelve positives were identified after three rounds of hybridization screening. Following single-pass, 5' end sequencing, the clones were sorted into four contiguous sequences. One clone was chosen from each contig for complete sequencing. The four clones, provisionally named MdSOT1-4 (Malus domesitca Sorbitol Transporter), potentially encode full-length cDNAs for sorbitol transporters: Translated-BLAST searching (blastx) revealed that the open reading frames encode the complete Pfam sugar transporter domain, and the most significant alignments are with sequences encoding known- and putative polyol and sugar transporters.
Seedling plugs of `Early Girl' tomato plants (Lycopersicon esculentum Mill.) were potted in peatmoss and perlite (60:40% by volume) medium, fertilized with 8, 16, 24, or 32 g NutriCote Total controlled-release fertilizer (type 100, 13N–5.67P–10.79K plus micronutrients) per pot (2.81 l), and treated with 0%, 2.5%, 5%, or 7.5% antitranspirant GLK-8924 solution, at the four true-leaf stage. Plants were tipped at the second inflorescence and laterals were removed upon emergence. Leaf stomatal conductance, transpiration rate, and growth were depressed by GLK-8924. In contrast, higher fertilization rate increased plant growth but leaf stomatal conductance and transpiration rate were not affected until 3 weeks after GLK-8924 treatment. With 24 g NutriCote per pot, lamina N concentration in GLK-8924 treated plants was 12.5-fold of that in untreated plants, regardless of GLK-8924 concentration. Lamina P, K, Fe, and Cu were greater while S, Ca, Mg, Mn, B, and Zn were not affected by GLK-8924. The reduced growth by GLK-8924 may be due to the reduced stomatal conductance while the increased growth by high fertilization may be due to influences on plant nutritional status.
Yeast assimilable nitrogen (YAN) can be a limiting nutritional factor for Saccharomyces cerevisiae yeast when fermenting apple (Malus ×domestica Borkh.) juice into hard cider. Endogenous YAN concentrations in apples are often below the recommended thresholds to completely use all of the fermentable sugar and minimize the production of off-flavors, such as hydrogen sulfide. Cider producers supplement apple juice with exogenous nitrogen to increase YAN. Urea, commonly applied to apple orchards to increase fruit size and yields, was tested for its ability to increase endogenous apple juice YAN. Starting 6 weeks before harvest in 2017 and 2018, a 1% urea solution was applied to ‘Red Spy’ apple trees one, three, or five times to create low-, medium-, and high-rate treatments, respectively. Relative to the control, the high treatment increased YAN by 229% in 2017 and by 408% in 2018. More than 90% of the YAN in all juice samples was composed of primary amino nitrogen (PAN). Among all treatments, PAN mostly comprised asparagine, and as urea applications increased, the relative concentration of asparagine also increased. Aspartic acid and then glutamic acid were the second and third most abundant amino acids in all treatments, respectively, but comprised less of the total PAN as the number of urea applications increased. Soluble solid concentration, pH, titratable acidity, and total polyphenol concentration were not different among treatments. There was a positive correlation between increased urea application rate and the maximum fermentation rate, which resulted in a shorter fermentation duration. Increasing the number of urea applications was also correlated with greater hydrogen sulfide (H2S) production in juice fermented from fruit harvested in 2017 but not for fruit harvested in 2018. No residual H2S was found in the finished cider from any treatment. Increasing the number of urea applications was estimated to be less expensive than supplementing the juice with Fermaid O™. There would have been no cost savings if Fermaid K™ was used as an exogenous nitrogen source. Foliar urea applications were estimated to be more expensive than supplementing juice with diammonium phosphate. This study demonstrated that foliar urea applications can effectively increase YAN concentration in cider apples while not negatively affecting other juice quality attributes.
The recent growth in the U.S. hard-cider industry has increased the demand for cider apples (Malus ×domestica Borkh.), but little is known about how to manage orchard soil fertility best to optimize horticultural performance and juice characteristics for these cultivars. To assess whether nitrogen fertilizer applied to the soil can improve apple juice and cider quality, calcium nitrate (CaNO3) fertilizer was applied at different rates to the soil beneath ‘Golden Russet’ and ‘Medaille d’Or’ trees over the course of three growing seasons. The experiment started when the trees were in their second leaf. The trees were cropped in their third and fourth leaf. At the end of the first growing season of the experiment, the greatest fertilizer rate increased tree trunk cross-sectional area (TCSA) by 82% relative to the control, but this difference did not persist through to the end of the study. Yield and crop load were unaffected by the nitrogen fertilization treatments. Increasing the nitrogen fertilizer rate correlated positively with more advanced harvest maturity in ‘Golden Russet’ fruit, which resulted in greater soluble solid concentration (SSC). Fruit from the greatest fertilizer rate treatment had an average starch pattern index (SPI) that was 1 U greater than in the control, and an SSC that was 3% greater than the control. The fertilizer treatments did not affect juice pH, titratable acidity (TA), or total polyphenol concentrations. Yeast assimilable nitrogen (YAN) concentrations were increased by nitrogen fertilization for both cultivars in both harvest years. The greatest fertilizer treatment increased juice primary amino nitrogen by 103% relative to the control. Greater nitrogen fertilization rates correlated positively with less hydrogen sulfide production during the fermentation of ‘Golden Russet’ juice from the first, but not the second, harvest. During the first year, cumulative hydrogen sulfide production for the ‘Golden Russet’ control treatment was 29.6 μg·L–1 compared with the ‘Golden Russet’ high treatment, which cumulatively produced 0.1 μg·L–1. Greater maximum fermentation rates and shorter fermentation durations correlated positively with increased fertilization rate for both cultivars after the second harvest. High treatment fermentations had maximum fermentation rates 110% greater, and fermentation durations 30% shorter than the control. Other horticultural and juice-quality parameters were not affected negatively by the CaNO3 treatments. In orchards producing apples specifically for the hard-cider industry, nitrogen fertilizer could increase juice YAN, thus reducing the need for exogenous additions during cider production.