Search Results

You are looking at 41 - 45 of 45 items for

  • Author or Editor: Kirk W. Pomper x
Clear All Modify Search

The American persimmon (Diospyros virginiana) is a slow-growing, moderately sized tree fruit native to the forests of Kentucky. This tree fruit is in the early stages of commercial production with many cultivars selected from the wild. Small orchards of commercially available cultivars are planted in Kentucky. Persimmons are normally dioecious, and female trees require cross-pollination to produce fruit. There are two races of persimmon: the tetraploid (60-chromosome) race is centered in the southern Appalachian region, while the hexaploid (90-chromosome) race generally occupies a range north and west of the tetraploid range. These ranges overlap in Kentucky. Because the ranges overlap, cross-pollination may cause sexual incompatibility, resulting in pollination without fertilization, and therefore seedless fruits of poor quality. The objective of this study was to assess the ploidy level of commercially available American persimmon cultivars and native Kentucky persimmon populations. Leaf samples were collected from 45 cultivars and advanced selections, as well as 45 trees from native populations in Bullitt, Barren, and Franklin Counties. Flow cytometer analysis showed that only four of the selected cultivars were from the tetraploid race: Ennis Seedless, Weeping, Sugar Bear, and SFES; the remaining cultivars were from the hexaploid race. Both hexaploid and tetraploid American persimmon trees were identified in the populations sampled in the Bullitt County locations, but only tetraploid races were found in Franklin and Barren Counties. Because pollen from native trees could result in seedless fruit formation of poor quality when native seedlings are used as pollinizers in commercial production of American persimmon, ploidy level of seedlings needs to be considered.

Open Access

Pawpaw (Asimina triloba) is an under-exploited small tree with commercial potential as a fruit crop, ornamental tree, and source of secondary products with insecticidal and medicinal properties. It is most often propagated from seeds that are recalcitrant and must be stored moist at a chilling temperature. Seeds display combinational (morphophysiological) dormancy. Endogenous, physiological dormancy is broken by about 100 days of chilling stratification followed by a period of warm moist conditions where the small embryo develops prior to seedling emergence about 45 days after the warm period begins. Pawpaw cultivars with superior fruit characteristics are propagated by grafting onto seedling understocks. The most common practice is chip budding. Other methods of clonal propagation have proven problematic. Pawpaw can be propagated from cuttings, but only in very young seedling stock plants. Micropropagation from mature sources is not yet possible, but shoot proliferation has been accomplished from seedling explants and explants rejuvenated by induction of shoots from root cuttings of mature plants. However, rooting of microcuttings and subsequent acclimatization has not been successful.

Full access

The pawpaw [Asimina triloba (L.) Dunal.] is a tree fruit native to many areas of the southeastern and mid-western United States. Kentucky State University (KSU) is designated as a satellite repository for Asimina for the U.S. Department of Agriculture (USDA), National Plant Germplasm System (NPGS). An assessment of the level of genetic diversity in cultivated pawpaw would assist in development of the future germplasm repository collection strategies for cultivar improvement. The objectives of this study were to identify intersimple sequence repeat (ISSR) markers that segregate in a simple Mendelian fashion and to use these markers to assess genetic diversity in 19 pawpaw cultivars. Leaf samples from the 34 progeny of controlled crosses (1-7-1 × 2-54 and reciprocal) and the parents were collected, DNA was extracted, and subjected to the ISSR methodology using the University of British Columbia microsatellite primer set #9. Seven primers yielded 11 Mendelian markers with either a 3:1 or 1:1 ratio that was confirmed by chi-square analysis. Analysis of genetic diversity using 10 of the ISSR markers from 19 pawpaw cultivars revealed a moderate to high level of genetic diversity, with a percent polymorphic loci P = 80 and an expected heterozygosity He = 0.358. These diversity values are higher than those reported for cultivated pawpaw using isozyme or randomly amplified polymorphic DNA (RAPD) markers, indicating that the ISSR marker methodolgy has a higher level of discrimination in evaluating genetic diversity in pawpaw and/or pawpaw has greater levels of genetic diversity than previously found.

Free access

Pawpaw [Asimina triloba (L.) Dunal.], a tree fruit native to eastern North America, is in the beginning stages of commercialization. Cultivars available in the early 20th century have been lost, and significant genetic erosion may have occurred. Polymorphic microsatellite marker loci were developed from enriched genomic libraries. Five marker loci were used to fingerprint 28 cultivars and 13 selections. For the 41 genotypes, 102 alleles were amplified and major allele frequency (0.16–0.94), number of genotypes (2–27), and allele size (144–343 bp) varied greatly by locus. Four loci were highly polymorphic, as indicated by values for expected heterozygosity (He), observed heterozygosity (Ho), and polymorphism information content, but only two alleles were detected at locus Pp-C104. A high level of genetic diversity was observed in the studied genotypes. The Ho (0.68) and He (0.70) were similar and indicated few null alleles. In the 41 genotypes, 39 unique fingerprints were observed. These new microsatellite marker loci will be useful for cultivar fingerprinting, management of collections, and investigation of genetic diversity in collections and wild populations. Grouping of genotypes in an unweighted pair group method with arithmetic mean dendrogram was generally consistent with their origins.

Free access