Search Results

You are looking at 41 - 50 of 74 items for

  • Author or Editor: John M. Dole x
Clear All Modify Search
Restricted access

Uttara C. Samarakoon, James E. Faust and John M. Dole

Vegetatively propagated unrooted cuttings are typically imported to the United States from Central America. Death or damage of cuttings during shipping and propagation can be reduced if cuttings can be made more resistant to external forces, such as physical damage or pathogen infection. However, strategies to develop durable cuttings via treating stock plants have not been previously quantified in controlled studies. During the current study, mechanical strength of leaves and resistance to infection by Botrytis cinerea were evaluated after weekly applications of calcium chloride (CaCl2) as a foliar spray to stock plants that delivered calcium (Ca) at the concentrations of 0, 400, or 800 mg·L−1. A texture analyzer quantified the peak force required to fracture the leaf and the work of penetration,or area under the force–displacement curve, and these measurements were indicators of mechanical strength. For poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) cuttings at the time of harvest from the stock plant, work of penetration increased by 10% with the application of 800 mg·L−1 Ca compared with the control, whereas peak force by 9%. For zonal geranium (Pelargonium ×hortorum Bailey), work of penetration increased 15% with the application of 800 mg·L−1 Ca compared with the control. Calcium concentration in the leaves increased from 1.2% to 2.0% in geranium and from 1.0% to 1.6% in poinsettia with increasing application from 0 to 800 mg·L−1 Ca. In poinsettia, disease incidence in response to inoculation with B. cinerea spores was 55% and 15% less with CaCl2 applications compared with controls with water and surfactant, respectively, whereas CaCl2 application to geranium did not affect disease incidence.

Full access

Brigitte D. Crawford, John M. Dole and Ben A. Bergmann

Influence of season of the year, cutting week within a propagation cycle (number of weeks from which a stock plant has been harvested), stock plant age, and rooting compound on postpropagation cutting quality, and adventitious rooting was examined for ‘Stained Glass’ coleus (Solenostemon scutellarioides). Cuttings were of higher quality and produced more robust root systems when a propagation cycle started in summer vs. fall or spring even when cuttings were harvested from stock plants of the same age. Cutting week within a propagation cycle significantly influenced postpropagation cutting quality and rooting when cuttings were harvested over many weeks from the same stock plants and when cuttings were harvested for three propagation events using stock plants of different ages. When cuttings were harvested on the same days from stock plants of three distinct ages, cuttings harvested in the first week were larger with greater root weights but had more yellowed leaves and lower quality ratings compared with the two subsequent cutting weeks, but stock plant age had no effect on any observed parameter. Treatment with rooting compound did not overcome the significant influences of season and cutting week within a propagation cycle whether rooting was carried out in a greenhouse or growth chamber. Shoot and root fresh and dry weights were positively correlated with both daylength and midday instantaneous light of the stock plant environment.

Full access

Erin P. Moody, John M. Dole and Jared Barnes

Various postharvest procedures were conducted on several rose (Rosa hybrida) cultivars to determine the effects on vase life, water uptake, change in fresh weight, stage of opening, and vase life termination criteria. Vase life was influenced by cultivar and vase solution. Commercial preservative solutions resulted in a longer vase life, smaller decrease in fresh weight than the controls, and smaller increase in water uptake. Vase life of nine cultivars in distilled water ranged from a low of 7.1 days for Queen 2000 to a high of 15.3 days for Forever Young. Flower termination criteria were also cultivar specific with Black Baccara, Classy, and Charlotte most prone to bent neck and blackening of petal tips. Exogenous ethylene at 0.4 or 4.0 μL·L−1 did not affect vase life but lowered water uptake. Application of the antiethylene agent silver thiosulfate (STS) at 0.2 mm concentration significantly improved vase life in five out of the nine cultivars (Anna, Charlotte, First Red, Freedom, and Konfetti) tested, but 1-methylcyclopropene (1-MCP) at 740 nL·L−1 did not improve vase life over the control. Both vase life and water uptake were reduced when more than one stem was placed in a vase; placing 10 stems in a vase shortened vase life by 1.4 days and impeded water uptake by up to 10.6 mL/stem per day. Increasing the amount of time stems remained dry before placing in a vase reduced vase life, but recutting immediately before placing in a vase minimized the decline. Increasing the amount of stem cut off the base up to 10 cm increased vase life.

Free access

W. Roland Leatherwood, John M. Dole and James E. Faust

Ethephon [(2-chloroethyl) phosphonic acid] is used to increase stock plant cutting productivity through increased flower and flower bud abscission and branching. However, ethylene evolution resulting from ethephon application is suspected to cause leaf abscission of unrooted cuttings during shipping. It was the objective of this study to assess ethylene evolution from ethephon-treated cuttings during storage and shipping of unrooted cuttings. Impatiens hawkeri W. Bull ‘Sonic Red’ and ‘Sonic White’ stock plants were treated with 0, 250, 500, or 1000 mg·L−1 ethephon. Cuttings were harvested from 1 to 21 days later and each harvest was stored at 20 °C in sealed jars for 24 h before ethylene measurement. Higher ethephon doses resulted in greater ethylene generation. Cuttings harvested 1 day after treatment with 0, 250, 500, or 1000 mg·L−1 ethephon evolved 0.07, 1.3, 1.7, or 5.8 μL·L−1·g−1 (fresh weight) ethylene in the first 24 h of storage at 20 °C, respectively. Twenty-one days after treatment, cuttings from the same plants evolved 0.05, 0.05, 0.15, or 0.14 μL·L−1·g−1 (fresh weight) ethylene in the first 24 h of storage at 20 °C, respectively. As cuttings were harvested from Day 1 to Day 21, ethylene concentrations evolved within the first 24 h of storage decreased exponentially. Rinsing cuttings, treated 24 h earlier with 500 mg·L−1 ethephon, by gently agitating for 10 s in deionized water reduced ethylene evolution to 0.7 μL·L−1·g−1 (fresh weight) as compared with 1.7 for unrinsed cuttings. Cuttings harvested 24 h after treatment with 500 mg·L−1 ethephon stored at 10, 15, 20, and 25 °C for 24 h evolved 0.37, 0.81, 2.03, and 3.55 μL·L−1·g−1 (fresh weight) ethylene. The resulting mean temperature coefficient (Q10) for the 10 to 25 °C range from all replications was 5.15 ± 0.85. Thus, ethylene continues to evolve from ethephon-treated Impatiens hawkeri stock plants for up to 21 days and can accumulate to high concentrations during cutting storage.

Free access

D. Steve Owens, Michael A. Schnelle and John M. Dole

Rock garden plants, typically alpine in nature, are indigenous to higher elevations and thus perform poorly in the South. Consequently, they are not adapted to environments with tight clay soils, extreme heat, high humidity, and periodic drought. A video and extension circular were produced to demonstrate the construction, planting and maintenance of an appealing yet durable rock garden for Oklahoma. Modifications in soil type, plant materials, and arrangement of rock, wherein small micro-habitats are created, comprise the core of the project. The aforementioned educational materials benefit the gardening public with previously unavailable information for Oklahoma. The video is included in the Oklahoma State Univ. Cooperative Extension Service video library, where it is available via rental or purchase. It provides informative visual instruction, complementing the written publication that outlines stepwise construction techniques coupled with a list of adaptable plants. Both the publication and video may have applications for gardeners in peripheral states.

Free access

Laurence C. Pallez, John M. Dole and Brian E. Whipker

Days from sowing to anthesis were significantly different among six sunflower (Helianthus annuus L.) cultivars and ranged from 52 days for `Big Smile' to 87 days for `Pacino'. Height ranged from 13.5 cm for `Big Smile' to 37.3 cm for `Pacino'. Postproduction life ranged from 10 days for `Pacino' and `Elf' to 15 days for `Big Smile'. Postproduction quality ratings (1 to 5, with 5 the best) ranged from 3.9 to 5 after 5 days and 1 to 4.2 after 10 days. Quality ratings after 15 days were not significantly different among cultivars, because few plants were marketable at 15 days. Increasing the number of plants per pot from one to three or five reduced number of days to anthesis and postproduction life. Pot sizes of 10-, 13-, or 15-cm diameter, had no influence on production or postproduction characteristics. Promalin (62.5 to 500.0 mg·L–1) was not commercially useful in extending postproduction life. Two cultivars were found to be most suitable for pot production, `Pacino' and `Teddy Bear', with one plant per 15-cm pot and sprayed with B-Nine at 8000 mg·L–1.

Free access

Jaime K. Morvant, John M. Dole and Janet C. Cole

Pelargonium ×hortorum Bailey `Pinto Red' plants were fertilized with equal amounts of N, P, and K derived from: 1) 100% constant liquid fertilization (CLF); 2) 50% CLF plus 50% controlled-release fertilizer (CRF); or 3) 100% CRF per pot and irrigated using hand (HD), microtube (MT), ebb-and-flow (EF), or capillary mat (CM) irrigation systems. The treatment receiving 100% CRF produced greater total dry weights, and released lower concentrations of NO3-N, NH4-N, and PO4-P in the run-off than the 100% CLF treatment. The percentage of N lost as run-off was greatly reduced with the use of CRF. MT irrigation produced the greatest plant growth and HD irrigation produced the least. The EF system was the most water efficient, with only 4.7% of water lost as run-off. Combining the water-efficient EF system with the nutrient-efficient CRF produced the greatest percentage of N retained by plants and medium (90.7) and the lowest percentage of N lost in the run-off (1.7).

Free access

Janet C. Cole, John M. Dole and Vicki L. Stamback

Water quality has become a significant issue in the nursery industry. Local testing of runoff contamination from nursery production is, however, of little value to other growers because of the variation in management practices and nursery layouts. Two nursery blocks have been designed and constructed to test runoff from production with sprinkler and drip irrigation systems in combination with constant liquid fertilization and controlled release fertilizers. Management practices using various combinations of irrigation systems with fertilizer application rates are being tested in a small area with reasonable control of inputs. Preliminary data has shown no difference in plant response to irrigation method, but runoff was significantly reduced with drip irrigation. Plant quality was better with controlled release fertilizer, which generally yielded less N and P contamination in runoff, than constant liquid fertilization except during extremely hot weather.

Free access

Carlma B. Bratcher, John M. Dole and Janet C. Cole

The germination responses of wild blue indigo [Baptisia australis (L.) R. Br.], purple coneflower [Echinacea purpurea (L.) Moench.], Maximilian sunflower (Helianthus maximiliani Schrad.), spike goldenrod (Solidago petiolaris Ait.), and Missouri ironweed (Vernonia missurica Raf.) seeds after 0, 2, 4, 6, 8, or 10 weeks of stratification at 5C were investigated. Seed viability was determined using triphenyl tetrazolium chloride staining and germination based on the percentage of viable seeds. Germination percentage (GP) increased in all five species as weeks of stratification increased. Days to first germination and germination range (days from first to last germinating seed) decreased with increasing weeks of stratification, but the effect beyond 4 to 6 weeks was minimal. The number of weeks of stratification for maximum GP was 4 for purple coneflower, 6 for Maximilian sunflower, 8 for Missouri ironweed, and 10 for wild blue indigo and spike goldenrod.

Free access

Carlma B. Bratcher, John M. Dole and Janet C. Cole

The effect of cold on germination rate, percentage and range of five cut flowers was investigated: Baptisia australis (Wild Blue Indigo), Echinacea purpurea (Purple Coneflower), Helianthus maximilianii (Maximillian Sunflower), Solidago petiolaris (Spike Goldenrod), and Vernonia missurica (lronweed). Viability was determined for the species using TTC staining and germination based on percent viable seed. Seeds were given 0, 2, 4, 6, 8, or 10 weeks of cold at 5°C. Increasing weeks of cold decreased days to germination in all five species, with Baptisia demonstrating the greatest effect. The germination percent increased as weeks of cold increased in all five species, but was most significant in Helianthus and Vernonia. Days from first to last germinating seed was significantly decreased in all five species as weeks of cold increased. Four weeks of cold was optimum for Echinacea and Vernonia, while optimum weeks of cold for Helianthus and Solidago was six weeks and Baptisia ten weeks.