Search Results

You are looking at 41 - 50 of 54 items for

  • Author or Editor: Hazel Y. Wetzstein x
Clear All Modify Search

Georgia plume (Elliottia racemosa, Ericaceae) is a threatened, woody plant endemic to Georgia's Coastal Plain region in the southeastern United States. Populations of the plant have a fragmented distribution within a restricted range and are characterized by low genetic diversity and a lack of sexual recruitment. Georgia plume cannot be effectively propagated using conventional methods. We have developed an in vitro shoot regeneration system that is effective with explants obtained from mature plants in the wild. The objective of this study was to determine the efficacy of using this in vitro protocol to regenerate proliferating shoot cultures from 34 georgia plume genotypes obtained from divergent populations. Young expanding leaves were cultured on Gamborg's media supplemented with 10 μM thidiazuron and 5 μM indole-3-acetic acid. After 8 weeks, tissues were transferred to a shoot elongation medium with 25 μM 2-isopentenyl adenine. Of the 34 genotypes tested, 91% formed shoot primordia and 85% regenerated shoots within 6 months of inoculation. This study verifies that tissue culture can be used to produce adventitious shoots from a wide range of georgia plume genotypes. Within a coordinated conservation program, tissue culture is a feasible system to use for safeguarding and reintroduction of genetically diverse plant material, which may be critical to the survival of this rare species.

Free access

Propiconazole, a triazole fungicide, has been reported to inhibit leaf expansion in pecan [Carya illinoensis (Wangenh.) K. Koch] trees when applied under field conditions. This study was conducted to determine the effect of propiconazole on pecan leaf morphology and structure using light and transmission electron microscopy. Mature pecan trees were sprayed once or three times per week from budbreak to pollen maturity. Fungicide sprays resulted in significantly reduced leaf area. Compared to controls, leaves from propiconazole-treated shoots had alterations in cell arrangement characterized by more tightly packed palisade parenchyma cells with fewer intercellular spaces; neither leaf thickness nor palisade or spongy layer thickness were affected. Propiconazole caused modifications in the chloroplasts, with a tendency for internal membranes to be less defined, and for thylakiods to exhibit less stacking. The extent of structural changes was related to fungicide dosage. Results show that propiconazole applications during leaf development can inhibit leaf expansion and modify cellular organization of the mesophyll cells. Chemical name used: 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl] methyl]-1H-1,2,4-triazole (propiconazole).

Free access

Georgia plume (Elliottia racemosa) is a threatened woody plant endemic to the Coastal Plain region of Georgia in the southeastern United States. Seed set is low in most populations, and sexual recruitment has not been observed in recent times. The objective of this study was to describe the floral biology of georgia plume. which is fundamental information needed to develop an understanding of the causes for lack of sexual reproduction in natural populations. Floral development was characterized and morphological characteristics at key developmental stages ranging from small, unopened buds to open flowers with receptive stigmas were examined using light and scanning electron microscopy. Flowering is protandrous, and anthers dehisce releasing pollen within closed buds before stigmas are receptive. Pollen tetrads, aggregated by viscin strands, are presented on unreceptive stigmas when petals reflex. Receptive stigmas developed a raised and lobed central region with a clefted opening leading to a stylar canal containing exudate produced in secretory regions. Receptivity of the non-papillate stigma is indicated by the formation of an exudate droplet, which is formed within 1 day after flower opening. Pollen viability was low to moderate; tetrad germination ranged from 20% to 40% using in vitro germination assays indicating poor pollen quality and may contribute to lack of seed development in some populations. No developmental abnormalities in stigmas or styles were observed indicating other factors are responsible for lack of sexual recruitment in the wild.

Free access

Pomegranate [Punica granatum (Punicaceae)] is characterized by having two types of flowers on the same tree: hermaphroditic bisexual flowers and functionally male flowers. This condition, defined as functional andromonoecy, can result in decreased yields resulting from the inability of male flowers to set fruit. Morphological and histological analyses of bisexual and male flowers were conducted using light and scanning electron microscopy (SEM) to characterize the different flower types observed in pomegranate plants and to better understand their developmental differences. Bisexual flowers had a discoid stigma covered with copious exudate, elongated stigmatic papillae, a single elongate style, and numerous stamens inserted on the inner wall of the calyx tube. Using fluorescence staining, high numbers of pollen tubes were observed growing through a central stylar canal. Ovules were numerous, elliptical, and anatropous. In contrast, male flowers had reduced female parts and exhibited shortened pistils of variable heights. Stigmatic papillae of male flowers had little exudate yet supported pollen germination. However, pollen tubes were rarely observed in styles. Ovules in male flowers were rudimentary and exhibited various stages of degeneration. Pollen from both types of flowers was of similar size, ≈20 μm, and exhibited similar percent germination using in vitro germination assays. Pollen germination was strongly influenced by temperature. Maximal germination (greater than 74%) was obtained at 25 and 35 °C; pollen germination was significantly lower at 15 °C (58%) and 5 °C (10%).

Free access

Abstract

The anatomy of in vitro- and in vivo-developed leaves of sweetgum, Liquidambar styraciflua L., grown under three quantum fluxes (PPF), was evaluated using light and scanning electron microscopy. Leaf characteristics of both in vitro- and in vivo-developed plants were modified by light: high irradiance was associated with more compact mesophyll and larger cells than low irradiance. However, when compared to plants grown in vivo under corresponding irradiance levels, all plants grown in vitro had smaller, thinner leaves and smaller mesophyll cells lacking extensive vacuolar components. Leaves developed in vitro had larger, raised stomata regardless of light level and, except at the highest irradiance, exhibited significantly greater stomatal densities than in vivo-developed leaves.

Open Access

Pomegranate trees (Punica granatum) produce large numbers of both hermaphroditic (bisexual) flowers that produce fruit and functionally male flowers that characteristically abort. Excessive production of male flowers can result in decreased yields resulting from their inability to set fruit. Within hermaphroditic flowers, sex expression appears to follow a spectrum ranging from those exhibiting strong to weak pistil development. Unknown is the scope that flower quality plays in influencing fruit production. A description of floral characteristics and how they vary with flowers of different sizes and positions is lacking in pomegranate and was the focus of this study. Furthermore, the effects of flower size and position on fruit set and fruit size were evaluated. This study documents that flower size characteristics and ovule development can be quite variable and are related to flower type and position. Single and terminal flowers within a cluster were larger than lateral flowers. In addition, lateral flowers exhibited a high frequency of flowers with poor ovule development sufficient to negatively impact fruiting in that flower type. Ovule numbers per flower were significantly influenced by flower size with more ovules in larger flowers. Pollination studies verified significantly higher fruit set and fruit weight, and larger commercial size distributions were obtained with larger vs. smaller flowers. Thus, flower quality is an important issue in pomegranate. Cultural and environmental factors that influence flower size and vigor may have a direct consequence on fruit production and yield.

Free access

Tissue culture is a useful means to clonally propagate new ornamental plant selections, particularly when plant material is limited and/or conventional propagation methods are ineffective. An efficient in vitro multiplication protocol was established to propagate a new goatsbeard hybrid (Aruncus dioicus, × A. aethusifolia). The hybrid is of interest because it exhibits a dwarf habit, delicate white flower panicles and fern-like leaves, yet is tolerant to heat and humidity. Experiments were conducted to evaluate explant type (nodes, stems, leaves, and floral parts), disinfestation procedures, and media formulations including varying concentrations of 6-benzylaminopurine (BAP) and naphthalene acetic acid (NAA). Rapid plant regeneration was obtained with a shoot organogenesis system using a half strength Murashige and Skoog medium supplemented with 4.4 μmol BAP, 0.54 μmol NAA, 30 g·L-1 sucrose, and 3.0 g·L-1 GelGro. Studies compared the performance and yield of plants rooted using different in vitro and ex vitro methods. Ex vitro rooting of shoots during greenhouse acclimatization under mist was most effective. Regenerated plants exhibited uniform and rapid growth, and performed well in greenhouse and field evaluations.

Free access

Many bromeliad species indigenous to the rain forests of Central and South America are threatened because of over-collection and habitat destruction. Studies were conducted to develop propagation protocols for Tillandsia eizii, a rare ornamental bromeliad of ceremonial significance to the Highland Maya communities in Chiapas, Mexico. We anticipate using in vitro propagation for the conservation of this species with the potential of utilizing bromeliads as an alternative and sustainable forest resource. Protocols were developed for the sterilization and germination of axenic seed. Seedling growth in vitro was assessed and outplanting studies were conducted. Media were evaluated to promote adventitious bud production in experiments using the plant growth regulators naphthaleneacetic acid and benzylaminopurine. Pulse time and duration, as well as the stage of seed development, had a marked effect on bud production. The effects of various potting media on plant growth and survival were assessed. A pure pine bark medium elicited over 95 percent survival. Plants exhibited a “tank-like” morphology characteristic of plants in the wild.

Free access

Rabbiteye blueberry (Vaccinium ashei Reade) often exhibits problems with low fruit set. Little is known about the duration of flower receptivity in this species. The objective of this study was to investigate the effects of flower age at pollination on fruit set, seed number per fruit, and stigmatic receptivity. `Brightwell' and `Tifblue' rabbiteye blueberry plants were kept under controlled conditions in a growth chamber. Day/night temperatures during pollination were 23 °C/10 °C. Flowers were hand pollinated with self- or cross-pollen at 2-day intervals ranging from 0 to 8 days after anthesis (DAA). Flower age at pollination had a significant effect on both fruit set and seed number per fruit. Rabbiteye blueberry flowers were able to produce optimum fruit set during a period of at least five days. Fruit set was markedly reduced 6 to 8 DAA, depending on the cultivar. Flower age at pollination also had a significant effect on stigmatic receptivity, which was assessed as the number of germinated tetrads on the stigma 24 hours after pollination. Stigmas pollinated 0 DAA had a significantly lower number of germinated tetrads than those pollinated 8 DAA. Flower age at pollination and stigmatic receptivity were positively associated. To our knowledge, this is the first quantitative evidence of delayed stigma maturation in blueberry. Stigmatic receptivity and fruit set were not correlated. Overall, the data strongly suggest that stigmatic receptivity was not a limiting factor for fruit set of `Brightwell' and `Tifblue'. It is hypothesized that ovule longevity determines the duration of flower receptivity in these two rabbiteye blueberry cultivars.

Free access