Search Results
You are looking at 41 - 50 of 61 items for
- Author or Editor: Erik S. Runkle x
We performed experiments to determine the photoperiodic response of Ceratostigma plumbaginoides Bunge., or leadwort, which is a low-growing hardy herbaceous perennial native to China with deep gentian-blue flowers. Tip cuttings were rooted in 72-cell trays and grown under a 24-hour photoperiod for 2 weeks and then transplanted into 11.4-cm pots and grown for one more week. Plants were then placed under different primary photoperiods (10, 16, or 24 hours) for 4, 6, or 8 weeks, then transferred to secondary photoperiods (10, 14, 16, or 24 hours) at a constant 20 °C. Pots were also placed under continuous 10, 14, 16, or 24 hours. Nearly all plants flowered under all treatments except under continuous 10- or 24-hour photoperiods, in which no plants flowered. Plants grown under 14 hours flowered earliest (50 days), followed by plants under the 16-hour primary treatment. The 10-hour primary treatment delayed flowering for as long as its duration, whereas the 16-hour primary photoperiod initiated rapid flowering, regardless of duration and subsequent secondary photoperiod. Flowering was also delayed when the primary photoperiod was 24 hours. Collectively, these responses indicate that Ceratostigma is an intermediate-day plant.
Two experiments were conducted to quantify the effect of vernalization temperature and duration on flowering of Dianthusgratianopolitanus `Bath's Pink'. In Expt. 1, plants were vernalized at 5 °C for 0, 3, 6, 9, 12, or 15 weeks and in Expt. 2, plants were vernalized at 0, 5 or 10 °C for 0, 2, 4, 6 or 8 weeks. After treatments, plants were forced in a greenhouse at 20 °C. Node development, days to first visible bud (DVB), days to first open flower (DFLW), number of buds and height at FLW were recorded. In Expt. 1, 10% of nonvernalized plants flowered and 100% of vernalized plants flowered. As vernalization duration increased from 3 to 15 weeks, DTVB decreased from 24 to 13. Average DFLW were 114, 41, 34, 33, 33, and 28 for 0-, 3-, 6-, 9-, 12-, and 15-week treatments, respectively. In Expt. 2, 40% of plants flowered without vernalization. Following 2 weeks of vernalization at 0 °C, 80% of plants flowered and as the duration of vernalization increased to ≥4 weeks, all plants flowered. Average DFLW decreased from 38 to 28 following 2 or 4 weeks of vernalization at 0 °C. Longer vernalization did not further reduce DFLW. All plants cooled at 5 °C flowered and vernalization duration did not affect DFLW. Percent flowering after vernalization at 10 °C for 2, 4, 6, and 8 weeks was 20%, 60%, 90%, and 100%, respectively, and average DFLW were 46, 45, 35, and 33, respectively. In conclusion, vernalization is required to force D.`Bath's Pink'. To achieve complete flowering, plants should be vernalized at 5 °C for ≥2 weeks or at 0 °C for 4 weeks or at 10 °C for 8 weeks. Qualitative effects of vernalization such as node development and number of buds and height at FLW will be discussed.
Some day-neutral herbaceous perennial species can be difficult to manage as vegetative stock plants because they initiate floral buds under most environmental conditions. Although flowering of many long-day plants can be inhibited by maintaining plants under short days, extension growth is often suppressed, which makes cuttings difficult to harvest. Ethephon (2-chloroethylphosphonic acid) is an ethylene-releasing chemical used to abort flowers, inhibit internode elongation, and promote branching of floriculture crops. The objective of this research was to determine whether ethephon is effective at maintaining vegetative growth and increasing the number of cuttings harvested for three popular perennial species that are difficult to maintain as vegetative plants. Spray applications of ethephon were applied for 10 weeks biweekly (every 2 weeks) or weekly at 0, 400, 600, or 800 mg·L−1. Biweekly applications at 600 mg·L−1 or weekly applications at 400 mg·L−1 increased branching and the number of vegetative cuttings in Coreopsis verticillata L. ‘Moonbeam’ and Veronica longifolia L. ‘Sunny Border Blue’, respectively. Ethephon application increased branching in Dianthus caryophyllus L. ‘Cinnamon Red Hots’, inhibited leaf expansion and stem extension, but did not abort flowers, and induced marginal leaf necrosis at all concentrations tested. Therefore, ethephon application has potential to maintain vegetative stock plants of C. verticillata ‘Moonbeam’ and V. longifolia ‘Sunny Border Blue’ but not D. caryophyllus ‘Cinnamon Red Hots’.
In protected environments, temperature is often regulated to produce ornamental crops for specific market dates. Temperature primarily controls plant developmental rate and thus production time, but it can also interact with light quantity to affect crop quality attributes such as flower number, branching, and biomass accumulation. We quantified how mean daily temperature (MDT) between 14 and 26 °C influenced quality characteristics of 15 common bedding plant crops. American marigold (Tagetes erecta), cup flower (Nierembergia caerulea), diascia (Diascia barberae), flowering tobacco (Nicotiana alata), geranium (Pelargonium ×hortorum), globe amaranth (Gomphrena globosa), heliotrope (Heliotropium arborescens), nemesia (Nemesia foetans), New Guinea impatiens (Impatiens hawkeri), osteospermum (Osteospermum ecklonis), pot marigold (Calendula officinalis), snapdragon (Antirrhinum majus), stock (Matthiola incana), and torenia (Torenia fournieri) were grown under two mean daily light integrals (9.0 and 18.0 mol·m−2·d−1) in five environmentally controlled greenhouse compartments with a 16-h photoperiod. As MDT increased from 14 to 26 °C, flower or inflorescence number decreased for nearly all crops. In six crops, flower or inflorescence size decreased as MDT increased, whereas in five crops, there was an initial increase in flower size with an increase in MDT and then a subsequent decrease at MDT greater than 20 °C. In 10 of the crops, shoot weight at flowering decreased linearly or quadratically with an increase in MDT. Branch number was inversely related with MDT in eight crops and was positively correlated with an increase in flower number. We conclude that in a majority of the crops studied, plant quality decreased as the MDT increased, which can at least partially be attributed to earlier flowering at the higher MDTs. Therefore, there is often a tradeoff between faster crop timing and higher plant quality, especially for plants with a low estimated base temperature (Tmin) for development.
Increasing the photosynthetic daily light integral (DLI) during the seedling stage promotes seedling growth and flowering in many bedding plants. Our objective was to determine the impact of increased DLI for different periods during the seedling stage on young plant quality and subsequent growth and development. Seeds of petunia (Petunia ×hybrida Vilm.-Andr. ‘Madness Red’) and pansy (Viola ×wittrockiana Gams. ‘Delta Premium Yellow’) were sown into 288-cell plug trays and placed under a 16-h photoperiod provided by sunlight plus 90 μmol·m−2·s−1 [supplemental lighting (SL)] or 3 μmol·m−2·s−1 [photoperiodic lighting (PL)] from high-pressure sodium lamps when the ambient greenhouse photosynthetic photon flux was less than 400 μmol·m−2·s−1 from 0600 to 2200 hr. Plants were grown at 20 °C under PL or SL for the entire seedling stage or were exposed to SL for one-third or two-thirds of the seedling stage. Seedlings were then transplanted into 10-cm pots and grown until flowering with SL at 20 °C. Shoot dry mass of transplants increased linearly with increasing DLI provided to seedlings in petunia (y = −4.75 + 1.86x, R 2 = 0.76) and pansy (y = −3.94 + 3.47x, R 2 = 0.78) in which y = dry mass (g) and x = DLI (mol·m−2·d−1). SL during the last two-thirds or the entire plug stage increased shoot dry mass and the number of leaves in both species compared with SL during the earlier stage or PL. SL during the last two-thirds or the entire plug stage accelerated flowering, but plants had a lower shoot dry mass and flower bud number at first flowering compared with that in SL during the first third or two-thirds or that in PL. Therefore, SL generally had greater effects on transplant quality and subsequent flowering when provided later in the plug stage than if provided earlier in production.
Intermediate-day plants (IDP) flower most rapidly and completely under intermediate photoperiods (e.g., 12 to 14 h of light), but few species have been identified and their flowering responses are not well understood. A variety of experiments was conducted to determine how light controls flowering and stem extension of Echinacea purpurea `Bravado' and `Magnus'. Both cultivars flowered most completely (79%) and rapidly and at the youngest physiological age under intermediate photoperiods of 13 to 15 h. Few (14%) plants flowered under 10- or 24-h photoperiods, indicating E. purpurea is a qualitative IDP. Plants were also induced to flower when 15-h dark periods were interrupted with as few as 7.5 min of low-intensity lighting (night interruption, NI). Flowering was progressively earlier as the NI increased to 1 h, but was delayed when the NI was extended to 4 h. Stem length increased by 230% as the photoperiod or NI duration increased, until plants received a saturating duration (at 14 h or 1 h, respectively). At macroscopic visible bud, transferring plants from long days to short days reduced stem extension by up to 30%. Flowering was inhibited when the entire photoperiod was deficient in blue or red light and was promoted in a far-red deficient environment, suggesting that phytochrome and cryptochrome control flowering of E. purpurea. Because of our results, we propose the flowering behavior of IDP such as E. purpurea is composed of two mechanisms: a dark-dependent response in which flowering is promoted by a short night, and a light-dependent response in which flowering is inhibited by a long day.
Six long-day species of herbaceous perennials were grown under six night-interruption (NI) photoperiod treatments to determine their relative effectiveness at inducing flowering. Photoperiods were 9-hour natural days with NI provided by incandescent lamps during the middle of the dark period for the following durations: 0.5, 1, 2, or 4 hours; 6 minutes on, 54 minutes off for 4 hours (10% or 6/54 cyclic lighting); or 6 minutes on, 24 minutes off for 4 hours (20% or 6/24 cyclic lighting). For five species, the experiment was repeated with more mature plants; for the sixth, Rudbeckia fulgida Ait. `Goldsturm', following a cold treatment of 8 weeks at 5 °C. The species generally showed a quantitative flowering response to the NI duration until a saturation duration was reached; as the length of the uninterrupted night break increased, flowering percentage, uniformity, and number and plant height increased and time to flower decreased. Minimum saturation durations of NI were 1 hour for Coreopsis grandiflora Hogg ex Sweet `Early Sunrise' and Hibiscus moscheutos L. `Disco Belle Mixed', 2 hours for Campanula carpatica Jacq. `Blue Clips' and Coreopsis verticillata L. `Moonbeam', and 4 hours for unchilled R. fulgida `Goldsturm'. Echinacea purpurea Moench `Bravado' flowered similarly across all lighting treatments. The 6/24 cyclic lighting regimen induced flowering comparable to that under a continual 4-hour NI for four of the six species and the cold-treated R. fulgida `Goldsturm'. Flowering under the 6/54 regimen was generally incomplete, nonuniform, and delayed compared to that under saturation duration treatments. Three of five species flowered earlier when more mature plants were placed under the NI treatments. Cold-treated R. fulgida `Goldsturm' flowered more rapidly than unchilled plants and the saturation duration of NI decreased to 1 hour.
`Snowcap' Shasta daisy [Leucanthemum ×superbum Bergmans ex. J. Ingram (syn: Chrysanthemum ×superbum, C. maximum)] was grown under various photoperiods and temperatures to determine their effects on flowering. In the first experiment, plants were held for 0 or 15 weeks at 5 °C and then were grown at 20 °C under the following photoperiods: 10, 12, 13, 14, 16, or 24 hours of continuous light or 9 hours with a 4-hour night interruption (NI) in the middle of the dark period. Without cold treatment, no plants flowered under photoperiods ≤14 hours and 65% to 95% flowered under longer photoperiods or NI. After 15 weeks at 5 °C, all plants flowered under all photoperiods and developed three to four or 10 to 11 inflorescences under photoperiods ≤14 or ≥16 hours, respectively. To determine the duration of cold treatment required for flowering under short photoperiods, a second experiment was conducted in which plants were treated for 0, 3, 6, 9, 12, or 15 weeks at 5 °C, and then grown at 20 °C under 9-hour days without or with a 4-hour NI. Under 9-hour photoperiods, 0%, 80%, or 100% of plants flowered after 0, 3, or ≥6 weeks at 5 °C, and time to flower decreased from 103 to 57 days as the time at 5 °C increased from 3 to 12 weeks. Plants that were under NI and received ≥3 weeks of cold flowered in 45 to 55 days. For complete and rapid flowering with a high flower count, we recommend cold-treating `Snowcap' for at least 6 weeks, then providing photoperiods ≥16 hours or a 4-hour NI during forcing.
Phlox paniculata Lyon ex Pursh `Eva Cullum' plants were grown under seven photoperiods following 0 or 15 weeks of 5 °C to determine the effects of photoperiod and cold treatment on flowering. Photoperiods were a 9-hour day extended with incandescent lamps to 10, 12, 13, 14, 16, or 24 hours; an additional treatment was a 9-hour day with a 4-hour night interruption (NI). Noncooled plants remained vegetative under photoperiods ≤13 hours; as the photoperiod increased from 14 to 24 hours, flowering percentage increased from 20 to 89. Flowering of noncooled plants took 73 to 93 days. Flowering percentage was 19, 50, or 100 when cooled plants were held under photoperiods of 10, 12, or ≥13 hours or NI, respectively. Time to flower in cooled plants progressively decreased from 114 to 64 days as the photoperiod increased from 10 to 24 hours. Reproductive cooled plants had at least three times more flowers, were at least 50% taller, were more vigorous, and developed seven or eight more nodes than did noncooled plants. Photoperiod had no effect on height of flowering plants.
To determine the flowering requirements of Rudbeckia fulgida Ait. `Goldsturm', plants were grown under 9-hour photoperiods until maturity, then forced at 20 °C under one of seven photoperiods following 0 or 15 weeks of 5 °C. Photoperiods consisted of a 9-hour day that was extended with incandescent lamps to 10, 12, 13, 14, 16, or 24 hours; an additional treatment was a 9-hour day with a 4-hour night interruption (NI). Noncooled `Goldsturm' remained vegetative under photoperiods ≤13 hours, and essentially all plants flowered under photoperiods ≥14 hours or with a 4-hour NI. Flowering percentages for cooled plants were 6, 56, or ≥84 under 10-, 12-, or ≥13-hour daylengths and NI, respectively. Critical photoperiods were ≈14 or 13 hours for noncooled or cooled plants, respectively, and base photoperiods shifted from 13 to 14 hours before cold treatment to 10 to 12 hours following cold treatment. Within cold treatments, plants under photoperiods ≥14 hours or NI reached visible inflorescence and flowered at the same time and developed the same number of inflorescences. Fifteen weeks of cold hastened flowering by 25 to 30 days and reduced nodes developed before the first inflorescence by 28% to 37%. Cold treatment provided little or no improvement in other measured characteristics, such as flowering percentage and uniformity, flower number, plant height, and vigor.