Search Results

You are looking at 41 - 50 of 62 items for

  • Author or Editor: Donald Huber x
Clear All Modify Search

Abstract

In the article “Respiration and Ethylene Production in Harvested Watermelon Fruit: Evidence for Nonclimacteric Respiratory Behavior,” by Mohamed E. Elkashif, Donald J. Huber, and Jeffrey K. Brecht [J. Amer. Soc. Hort. Sci. 114(1):81–85, January, 1989], the respiratory drifts in Fig. 1 were not clearly visible. An improved figure is printed below.

Open Access

Bell pepper (Capsicum annuum L., var. `Jupiter') fruit stored in 1.5%, 5%, or 10% O2, or in air at 20C for24 hours were compared to determine the residual effect of low-O, storage on respiration after transfer to air. The lowest O2 concentration (1.5%) exerted the greatest residual effect on bell pepper fruit CO2 production and O2, uptake. No ethanol was detected in the headspace gas of fruit stored in 1.5% O2. Carbon dioxide production continued to be suppressed for ≈ 24 hours after transfer from 1.5% O2 to air. Exposure to 5% O2, for 24 hours resulted in less suppression of CO, production and O2 uptake upon transfer to air, while 10% O2 exerted no residual effect. Extending the storage period in 1.5% O2 to 72 hours extended the residual effect from 24 to 48 hours. Ethylene production was not affected by storage in 1.5% or 4% O2 for 24 or 72 hours. The residual effect exhibited in whole fruit was not apparent in mitochondria isolated from bell pepper stored in 1.5% or 4% O2.

Free access

Ethylene production by locule gel tissue excised from full-size immature- and mature-green tomato fruit was inhibited by exposure to l00μl·l-1 C2H4, and ACC content was reduced. In contrast, CO2 production, EFE activity, red color development, and tissue liquefaction were stimulated by C2H4, and, in immature gel, the onset of autocatalytic C2H4 production was hastened. The autoinhibition of C2H4 production required continuous exposure to C2H4, as transfer to air and then back to C2H4 resulted in C2H4 production first increasing to control levels, then decreasing again. Locule tissue from pink fruit responded to C2H4 treatment with increased production of both C2H4 and CO2, but ACC levels were unchanged. Inhibition of C2H4 action by pretreatment with STS inhibited both autoinhibition of C2H4 production in immature gel and autocatalytic C2H4 production in mature tissue. These results indicate that there is a transition from a negative to a positive feedback mechanism of C2H4 on C2H4 biosynthesis in locule gel during ripening. Additionally, this feedback mechanism, which involves ACC synthase, is apparently under separate control from the other manifestations of C2H4 action.

Free access

In this study, ripening characteristics, including color change and softening, were determined for tomato (Lycopersicon esculentum `Florida 47') fruit at immature-green through light red stages of development and subsequently treated with 1 μL·L–1 1-methylcyclopropene (1-MCP). Special attention was directed at comparing the responses of immature and mature-green fruit. Surface color and whole fruit firmness were measured every other day. 1-MCP delayed or slowed color changes and softening in fruit of every maturity class, with differences between control and treated fruit evident immediately following 1-MCP application for 24 h at 20 °C. Fruit treated with 1-MCP at early maturity stages (immature-green, mature-green, and breaker) exhibited an extended delay in external red pigment accumulation compared with control fruit. Fruit of all maturity classes developed acceptable final hue values (hue angle ≤55°), and the time required to reach these values declined with advancing fruit maturity. Immature-green fruit treated with 1-MCP did not attain an acceptable degree of softening during the specified storage periods examined before deteriorating due to shriveling and pathogen proliferation. 1-MCP-treated mature-green and breaker stage fruit did recover to acceptable firmness (5–10 N) and hue values but exhibited a severely reduced storage life thereafter compared with untreated fruit of equal maturity. Fruit at turning and more advanced stages exhibited reduced rates of softening and color development when treated with 1-MCP, yet they attained firmness and color values within the range of acceptability for commercial use. Fruit treated with 1-MCP at pink and light-red stages of ripening developed normal external color and exhibited significantly extended postharvest life due largely to a significant retention in firmness when compared to control fruit. Based on the studies described for `Florida 47' tomato fruit, 1-MCP would appear to be of little benefit and possibly detrimental if applied to early maturity fruit, most notably greens and breakers, due to irreversible limitations in the capacity of these fruit to soften to acceptable values. In sharp contrast, more advanced stage fruit, particularly pink and light red, responded to 1-MCP with significantly extended shelf-life due to retention of firmness.

Full access

Growth and development were characterised in two compound tropical fruit, soursop, Annona muricata L., and breadfruit, Artocarpus altilis (Park.) Fosb. The growth curves of both fruit were typically sigmoidal as determined by length, diameter, fresh weight and dry weight measurements. Soursop showed biphasic development with the flower/fruit remaining in an apparent resting state for some 12 weeks post anthesis before entering the second or true phase of growth leading to maturity. For both fruit, size increase extended over a 3 month period. Maturity indices were derived for each fruit and simple post harvest changes in texture, respiration and ethylene evolution investigated. storing either fruit under refrigeration down to 14°C significantly extended storage life though at temperatures below this chilling injury was evident.

Free access

Roma tomatoes (‘BHN 467’) were hand-harvested at mature-green color stage and treated with ethylene (100 μL·L−1 at 20 °C and 90% relative humidity) until reaching breaker (<10% red), pink (30%–60% red), or light-red ripeness stage (60%–90% red). Individual fruit at each ripeness stage were subjected to double impacts over the locule using a pendulum-impact device with a force equivalent to two 40-cm drops, followed by ripening at 20 °C. Fruit exhibited most noticeable increases in respiration and ethylene production within 1 hour and 1 day after impact, respectively. After 24 hours, respiration rates increased 40%–60% regardless of ripeness stage, while ethylene production in impacted breaker-stage fruit increased 3-fold (to 6.7 μL·kg−1·h−1). Fruit impacted at breaker stage softened 2 days earlier compared with non-impacted breaker fruit. Fruit impacted at all ripeness stages had higher electrolyte leakage and polygalacturonase (PG) activity during ripening than non-impacted fruit. After 6 days, electrolyte leakage in fruit impacted at light-red ripeness stage was 23% higher than non-impacted fruit; PG activity in breaker fruit increased 40% at 10 days over non-impacted fruit. No changes were observed for soluble solids content, total titratable acidity, pH, or sugar/acid ratio from impacts, independent of ripeness stage.

Free access

Tomato (Lycopersicon esculentum Mill.) fruit, cv. Solar Set, were harvested at the mature-green stage and treated with 50 μL·L-1 ethylene at 20 °C. Individual fruits at the breaker stage (<10% red color) were dropped onto a solid surface to induce internal bruising. Dropped and undropped fruit were stored at 20 °C until red-ripe, at which time pericarp, placental, and locule tissues were excised. Tissues from dropped tomatoes were examined for evidence of internal bruising and all tissues were analyzed for selected volatile profiles via headspace analysis. Individual volatile profiles of the three tissues in bruised fruit were significantly different from those of corresponding tissues in undropped, control fruit, notably: trans-2-hexenal from pericarp tissue; 1-penten-3-one, cis-3-hexenal, 6-methyl-5-hepten-2-one, cis-3-hexenol and 2-isobutylthiazole from locule tissue; and 1-penten-3-one and β-ionone from placental tissue. Alteration of volatile profiles was most pronounced in the locule tissue, which was more sensitive to internal bruising than the other tissues. Changes observed in the volatile profiles appear to be related to disruption of cellular structures.

Free access

Some physiological and biochemical properties of melting flesh (MF) and non-melting flesh (NMF) peaches [Prunus persica (L.) Batsch] were determined during ripening for 5 days at 20 °C. Respiration rates and ethylene production of MF ‘Flordaprince’, MF ‘TropicBeauty’, NMF ‘UFSun’, and NMF ‘Gulfking’ were measured at different harvest skin ground color-based maturity stages. The MF cultivars at harvest were mostly preclimacteric or at the onset of ripening. The NMF cultivars generally had higher ethylene production at harvest and throughout ripening than the MF cultivars; thus, the NMF fruit had started ripening on the tree before harvest. Some of the NMF fruit harvested at more advanced stages quickly became postclimacteric during the storage period. Quality determination after fruit ripening showed that MF ‘TropicBeauty’ had the highest soluble solids content (SSC), but also the highest titratable acidity (TA). The NMF cultivars had lower TA than the MF cultivars. NMF ‘Gulfking’ consistently had high SSC/TA, which was the result of it having the lowest TA. The NMF cultivars retained firmer texture than the MF cultivars during ripening. The flesh firmness of the NMF cultivars was four to five times greater than that of the MF cultivars. To investigate the reason for this significant textural difference, the activities of the cell wall modification enzymes pectin methylesterase (PME) and polygalacturonase (PG) were quantified in all four cultivars at advanced ripeness stages. PME activity appeared to be more directly related with peach fruit softening than PG activity.

Free access

Two Guatemalan-West Indian avocado (Persea americana) hybrids (‘Monroe’ and ‘Booth 8’) were treated with an aqueous formulation of 1-methylcyclopropene (1-MCP) to determine effects on ripening and quality during storage simulating commercial shipping temperatures. Fruit harvested at preclimacteric stage were immersed in aqueous 1-MCP at 75 μg·L−1 (1.39 mmol·m−3) or in deionized water for 1 minute, stored at 10 °C for 14 days, and then transferred to 20 °C until ripe. Respiration rate, ethylene production, softening, and change in epidermal hue* angle were delayed and/or suppressed in both cultivars exposed to 1-MCP, although effects were less pronounced with Booth 8. Hue* angles for 1-MCP-treated ‘Monroe’ fruit had the highest values (darkest green peel color) of all treatments at full-ripe stage (hue* angle = 117). For control and treated ‘Monroe’ fruit respiration peaked on days 15 and 21, while ethylene production from both treatments peaked on day 16. Respiration and ethylene production peaked on day 16 for both control and 1-MCP–treated ‘Booth 8’ fruit. Fruit treated with 1-MCP consistently showed diminished respiration and ethylene peaks. Days to full-ripe stage were unaffected by treatment. ‘Booth 8’ fruit from both treatments were considered ripe (15 N whole fruit firmness) after 17 days; however, only 8% of control fruit were marketable, whereas 58% of 1-MCP-treated fruit were marketable, based on subjective appearance ratings using the Jenkins–Wehner score. The development of peel blemishes during storage was the primary cause of unmarketable fruit. ‘Monroe’ control and 1-MCP–treated fruit were soft after about 22 days and were significantly more marketable (control 70% and 1-MCP 85%). Avocados treated with 1-MCP ripened over a longer period than control fruit but maintained a higher percentage of marketable fruit.

Free access

`Solar Set' tomatoes (Lycopersicon esculentum Mill.) were harvested at the mature-green stage of development and treated with 50 μL·L-1 ethylene at 20 °C. Breaker-stage fruit were dropped from 40 cm onto a solid surface to induce internal bruising and held along with undropped fruit at 20 °C. At the ripe stage, pericarp, locule, and placental tissues were analyzed for soluble sugars, vitamin C, pigments, titratable acidity, soluble solids content, pericarp electrolyte leakage, extractable polygalacturonase activity, and locule tissue consistency. Bruising significantly affected chemical composition and physical properties of pericarp and locule tissues, but not placental tissue. For bruised locule tissue, carotenoids, vitamin C, and titratable acidity were 37%, 15%, and 15%, lower, respectively, than unbruised fruit. For bruised pericarp tissue, vitamin C content was 16% lower than for unbruised tissue, whereas bruising increased electrolyte leakage and extractable polygalacturonase activity by 25% and 33%, respectively. Evidence of abnormal ripening following impact bruising was confined to locule and pericarp tissues and may be related to the disruption of cell structure and altered enzyme activity.

Free access