Search Results

You are looking at 41 - 50 of 62 items for

  • Author or Editor: Dewayne Ingram x
Clear All Modify Search

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.

Full access

Abstract

Quercus virginiana Mill., Magnolia grandiflora L., Liquidambar styraciflua L., Ulmus parvifolia Jacq. ‘Drake’, Lagerstroemia indica L., Ilex opaca Ait. ‘East Palatka’, and Pinus elliottii Engelm. were transplanted from 3-liter containers into 36-cm-diameter fabric Field-Gro containers, directly in the field into 36-cm-diameter auger-dug holes, or into 36-cm-diameter × 33-cm-tall black plastic containers. After 1 year, measured growth parameters of the Magnolia, Ulmus, Lagerstroemia, and Pinus were not affected by production system. Dry weight of Quercus and Liquidambar roots in the “harvest zone” were greater for trees grown in the fabric Field-Gro containers than those grown directly in the field. Quercus height and total carbohydrate content of Quercus and Magnolia primary root samples were increased by the fabric container. The above-ground container system clearly was inferior to the field-grown systems for production of the Quercus and Liquidambar under the conditions of this study.

Open Access

Ilex crenata Thunb. `Rotundifolia' grown in sand culture with the root zone at 40C for 6 hours daily had smaller root and shoot dry weights after 6 weeks than plants grown with root zones at 28 or 34C. Root and shoot N accumulation (milligrams N per gram of dry weight) decreased when root-zone temperatures were increased from 28 to 40C and plants were fertilized twice dally with either 75, 150, or 225 mg N/liter. Nitrogen application rates of 150 or 225 mg·liter-1 resulted in increased root and shoot N accumulation for plants grown with root zones at either 28, 34, or 40C compared with the 75 mg N/liter treatment. Increased N fertilization rates did not alleviate reduced plant growth due to the high root-zone temperature.

Free access

Rooted stem cuttings of Ilex crenata Thunb. `Rotundifolia' were grown in a controlled-environment growth chamber. Root-zone temperatures were controlled with an electric system. Shoot carbon exchange and root respiration rates were determined in response to root-zone temperatures of 28, 32, 36, and 40C for 6 hour·day–1 for 7 days. Photosynthesis was decreased by root zones ≥ 32C, while root respiration increased with increasing root-zone temperature. Decreased photosynthetic rates were not due to increased stomatal resistance.

Free access

Abstract

Root systems of ‘Grande Name’ banana (Musa spp. L., AAA Group), Ixora coccinea L., Dracaena marginata L., and ‘Carrizo’ citrange [Citrus sinensis L. (Osbeck) × Poncirus trifoliata L.(Raf.)] were exposed to temperatures of 28°, 34°, and 40°C for 6 hr daily for 90 days. Root zone temperature did not affect dry weight of shoots or roots of ixora or citrus, but the 40° treatment increased the shoot to root ratio, S:R. Banana shoot dry weight decreased linearly with increasing root zone temperature, but root dry weight was not affected. The 40° root temperature regime reduced root dry weight in dracaena but not shoot dry weight. Absolute concentrations of sugars and starch in shoots and roots of the 4 test plants did not differ with root temperature, but the ratio of sugars to starch in roots was reduced in ixora and increased in banana by the 40° treatment.

Open Access

The production components of an evergreen shrub (Ilex crenata ‘Bennett’s Compacta’) grown in a no. 3 container in an east coast U.S. nursery were analyzed for their costs and contributions to carbon footprint, as well as the product impact in the landscape throughout its life cycle. A life cycle inventory was conducted of input materials, equipment use, and all cultural practices and other processes used in a model production system for this evergreen shrub. A life cycle assessment (LCA) of the model numerated the associated greenhouse gas emissions (GHG), carbon footprint, and variable cost of each component. The LCA also included the transportation and transplanting of the final product in the landscape as well as its removal after a 40-year useful life. GHG from input products and processes during the production (cutting-to-gate) of the evergreen shrub were estimated to be 2.918 kg CO2e. When considering carbon sequestration during production weighted over a 100-year assessment period, the carbon footprint for this model system at the nursery gate was 2.144 kg CO2e. Operations, combining the impact of material and equipment use, that contributed most of GHG during production included fertilization (0.707 kg CO2e), the liner and transplanting (0.461 kg CO2e), the container (0.468 kg CO2e), gravel and ground cloth installation (0.222 kg CO2e), substrate materials and preparation (0.227 kg CO2e), and weed control (0.122 kg CO2e). The major contributors to global warming potential (GWP) were also major contributors to the cutting-to-gate variable costs ($3.224) except for processes that required significant labor investments. Transporting the shrub to the landscaper, transporting it to the landscape site, and transplanting it would result in GHG of 0.376, 0.458, and 0 kg CO2e, respectively. Variable costs for postharvest activities were $6.409 and were dominated by labor costs (90%).

Free access

The understanding, calculation, and comparison of water footprint (WF) among specialty crop growers are confounded by geography, species, and process. This study builds on published models of representative plant production systems developed using life cycle assessment. These models include container production using recycled water in the mid-Atlantic, southeastern, and Pacific northwestern regions of the United States and greenhouse production implementing rainfall capture and overhead and ebb/flood irrigation strategies. Production systems using recycled water compare favorably in consumptive water use (CWU) with those that do not, regardless of the water source. Production systems in geographic locations with high water availability compare favorably with production systems in locations with high water scarcity in WF, but not necessarily CWU.

Open Access

Life cycle assessment (LCA) was used to analyze the global warming potential (GWP) and variable costs of production system components for an 11.4-cm container of wax begonia (Begonia ×semperflorens-cultorum Hort) modeled in a gutter-connected, Dutch-style greenhouse with natural ventilation in the northeastern United States. A life cycle inventory of the model system was developed based on grower interviews and published best management practices. In this model, the GWP of input products, equipment use, and environmental controls for an individual plant would be 0.140 kilograms of carbon dioxide equivalents (kg CO2e) and the variable costs would total $0.666. Fifty-seven percent of the GWP and 43% of the variable costs would be due to the container and the portion of a 12-plant shuttle tray assigned to a plant. Electricity for irrigation and general overhead would be only 13% of GWP and 2% of variable costs. Natural gas use for heating would be 0.01% of GWP and less of the variable costs, even at a northeastern U.S. location. This was because of the rapid crop turnover and only heated for 3 months of a 50-week production year. Life cycle GWP contributions through carbon sequestration of flowering annuals after being transplanted in the landscape would be minor compared with woody plants; however, others have documented numerous benefits that enhance the human environment.

Free access

Trees were grown for 2 years as a function of three container volumes (10, 27, and 57 liter) the first year and six shifting treatments (10 liter both years, 10 to 27 liter, 10 to 57 liter, 27 liter both years, 27 to 57 liter, or 57 liter both years) the second year when containers were spaced 120 cm on center, Height and caliper were greatest for magnolias grown in 27- or 57-liter containers both years. Caliper was greater for trees shifted from 10-liter containers to the larger container volumes compared to trees grown in 10-liter containers both years, Trees grown in 10-liter containers both years tended to have few roots growing in the outer 4 cm at the eastern, southern, and western exposures in the grow medium, During the second year, high air and growth medium temperatures may have been primary limiting factors to carbon assimilation during June and August. Using large container volumes to increase carbon assimilation and tree growth may be even more important when daily maximum air temperatures are lower during late spring or early fall compared to midsummer.

Free access