Search Results

You are looking at 41 - 50 of 66 items for

  • Author or Editor: D. Scott NeSmith x
Clear All Modify Search

`Climax' blueberry is a major cultivar in Georgia, but because of its excessively low chilling requirement and early blooming habit, it has a poor cropping history in recent years due to spring freezes. Research was initiated to explore the potential for ethephon to delay bloom, without delaying ripening too much. In 1997-1998 a treatment of 200 ppm ethephon applied on 3 Nov. or 400 ppm applied on 17 Nov. delayed bloom 5 to 7 days compared to the control. There was no significant difference between the control and the ethephon treatment in flower bud density or fruit density in the spring. In 1998-1999 ethephon applications at 200 and 400 ppm were applied once or twice 2 weeks apart starting on 5 Oct. and ending 19 Nov. A bloom delay of about 7 days was achieved with most ethephon applications. However, an application of 400 ppm on 19 Oct. and 2 Nov. delayed bloom about 14 days compared to the control. There was a trend toward delayed fruit ripening with the most-effective bloom delay treatments, but the extent of delayed ripening was minimal. Berry weight was not effected by ethephon treatments.

Free access

Poor blueberry leaf development is a serious problem in medium and low chilling regions which leads to smaller, later ripening fruit and reduced bush vigor. Dormex (hydrogen cyanamide) and Promalin or Accel (6-benzyl adenine plus gibberellins A4 and A7) were used in the experiments. Dormex 1991-1995 trials with applications at the end of the dormancy period (February) looked promising but were not uniformly successful. In 1996, applications were made starting in mid-dormancy (early-mid January) about 6-8 weeks before normal bud break. Spring vegetative bud development was greatly accelerated with minimal advance in flower development. Mid-dormancy Dormex rates of 1.5% to 2% appear promising. Dormex application after bud break or at excessively high rates will kill flower buds, but has excellent potential as a bloom thinning agent for juvenile blueberry plants. Promalin or Accel applications post bloom significantly accelerated spring leaf development. Late summer applications of Promalin significantly increased fall growth and number of side shoots.

Free access

Recent research in Georgia indicated gibberellic acid (GA3) could possibly be used to induce fruit set of freeze damaged rabbiteye blueberry (Vaccinium ashei) blooms. This research was conducted to determine the subfreezing temperature limit at which GA3 could be expected to be of use in salvaging a crop with freeze-damaged flowers. Rabbiteye blueberries with flower buds at stages 5 to 6 of development (fully elongated corollas and open blooms) were exposed to temperatures of 0, –1, –3, and –4.5°C in growth chambers to simulate overnight freezing events. After cold exposure, plants were placed in a greenhouse with a hive of bumblebees. Half of the plants were treated with GA3 and half were not. The number of flowers and subsequent fruit were recorded in order to calculate fruit set. Temperatures of –1°C and below caused fruit set resulting from pollination by bees to decline compared to control plants; whereas, flowers treated with GA3 had fruit set comparable to control plants down to –3°C. Plants exposed to –3°C had 50% to 80% fruit set when treated with GA3 compared to 5% to 19% fruit set for untreated plants. Temperatures of –4.5°C caused severe flower damage, and fruit set by pollination or GA3 was very poor (<2%). These results indicate that GA3 should be useful in salvaging a blueberry crop exposed to temperatures of – 1 to –3.5°C during bloom.

Free access

Fruit detachment in blueberry (Vaccinium sp.) may occur through the physiological process of abscission or through physical separation by breakage. Natural and induced fruit detachment through abscission occurs at the peduncle–pedicel junction (PPJ), while detachment through breakage typically occurs at the fruit–pedicel junction (FPJ). The ease of fruit detachment varies across blueberry genotypes, and a better understanding of such variation may allow for the development of genotypes better suited for hand and mechanical harvesting. TH-729 and ‘Suziblue’ are sibling southern highbush blueberry (hybrids composed largely of Vaccinium corymbosum and Vaccinium darrowi) genotypes derived from the same cross (‘Star’ × TH-474) and differ in their fruit detachment characteristics. Anatomical and molecular basis of the difference in fruit detachment between these genotypes was investigated in this study. Greater than 85% of the mature fruit of TH-729 detached at the PPJ in response to mechanical shaking in contrast to that observed in ‘Suziblue’, where greater than 90% of the fruit detached at the FPJ. The anatomy of the abscission zones (AZs) at the PPJ was similar between the two genotypes indicating that they did not differ in the establishment of the AZ. The fracture plane at the PPJ of manually detached fruit was more even in TH-729 compared with that in ‘Suziblue’, where many ruptured cells were evident. These data suggest advanced progression of abscission at the PPJ in TH-729 compared with that in ‘Suziblue’. The expression of 28 genes related to cell wall and membrane metabolism, phytohormone metabolism and signaling, and transcriptional regulation was compared between the two genotypes. Of these, two genes, ILL1 (iaa-leu resistant 1 like 3) and BIM1 (bes-interacting myc like1), associated with auxin metabolism and brassinosteroid signaling displayed over 3-fold and 1.5-fold higher transcript accumulation, respectively, in TH-729. Also, OPR1 (12-oxophytodienoate reductase), a gene associated with jasmonate (JA) biosynthesis, displayed 33% lower transcript levels in TH-729. As phytohormone signaling regulates the acquisition of competence for abscission, these data suggest that this phase of abscission progression at the PPJ differed between the two genotypes. Together, data from this study suggest inherent differences in the progression of abscission at the PPJ in blueberry. Such variation can be exploited to develop genotypes with desired harvesting characteristics.

Free access

Released in 2004 by the University of Georgia and U.S. Dept. of Agriculture, `Vernon' is an early season rabbiteye blueberry (Vaccinium ashei Reade), having large fruit size, good yields and excellent plant vigor. `Vernon', tested as T-584, was selected in 1990 at the Coastal Plain Experiment Station in Tifton, Ga. from a cross of T-23 × T-260. `Vernon' fruit ripens early with the cultivar Climax in south Georgia, and few days before `Premier'; however, `Vernon' flowers 5 to 10 days after the standard cultivars. On average over a 6 year period, `Vernon' yielded 5.8 kg/plant per season, compared to 3.1 and 4.5 kg/plant for `Climax' and `Premier', respectively. Berry stem scar, color, firmness, and flavor of the new cultivar are good to excellent. Berry size of `Vernon' is considerably large, averaging 2.05 g/berry over 4 locations in 2003, compared to only an average weight of 1.56 g/berry for `Climax'. `Vernon' berries are firmer than `Premier'. Propagation of the new cultivar is easily accomplished from softwood cuttings. Chill hour requirement is estimated to be in the range of 500 to 550 hours (<7 °C). `Vernon' should be planted with other rabbiteye blueberry cultivars with a similar time of bloom to provide optimum pollination. Propagation rights are controlled by Georgia Seed Development Commission, 2420 S. Milledge Avenue, Athens, GA 30606 (for more information go to www.gsdc.com).

Free access

Field studies were conducted to evaluate the tolerance of several pepper (Capsicum annuum L.) cultivars to the herbicide clomazone. Peppers tested included the bell cultivars Yolo Wonder and Jupiter; the banana cultivar Sweet Banana; and the pungent cultivars Jalapeno and Red Chili. Treatments were clomazone at 0.56 or 1.12 kg·ha-1 a.i. applied either preplant incorporated (PPI), pretransplant (PRE-T), or posttransplant (POS-T) on the day of transplanting, plus a nontreated control. Clomazone at 1.12 kg·ha-1 a.i. PPI and PRE-T significantly injured (bleaching or chlorosis of foliage) `Sweet Banana' (40% and 20%, respectively) and `Red Chili' (30% and 18%, respectively) in 1993 in early-season evaluations, but this injury was transient and did not significantly affect total fruit number or yield. Injury to any cultivar from POS-T clomazone at 0.56 and 1.12 kg·ha-1 a.i. was nonsignificant. Overall, tolerance to clomazone was excellent for all treatments and across all cultivars. Yield was not reduced significantly by any treatment. Chemical names used: 2-[(2-chlorophenyl) methyl]-4, 4-dimethyl-3-isoxazolidinone (clomazone).

Free access