Search Results

You are looking at 41 - 50 of 53 items for

  • Author or Editor: Carol Miles x
Clear All Modify Search

The use of plastic biodegradable mulch (BDM) in many vegetable crops such as tomato (Solanum lycopersicum L.), broccoli (Brassica oleracea L. var. italica), and pepper (Capsicum annuum L.) has been proven to be of equal benefit as polyethylene (PE) mulch. However, there are limited research findings on the performance of BDM with a large fruited crop such as pumpkin (Cucurbita pepo L.) where the fruit can rest directly on the mulch for an extended period. To investigate whether heavy fruit might cause the mulch to degrade more quickly than expected, thereby, influencing weed control, fruit yield, and fruit quality including mulch adhesion on fruit, we carried out a field experiment in 2015 and 2016 at two locations in the United States with distinctive climates, Mount Vernon, WA and Knoxville, TN. Three plastic mulches marketed as biodegradable (BioAgri, Organix, and Naturecycle), one fully biodegradable paper mulch (WeedGuardPlus), and one experimental plastic BDM consisting of polylactic acid and polyhydroxyalkanoates (Exp. PLA/PHA) were evaluated against PE mulch and bare ground where ‘Cinnamon Girl’ pie pumpkin was the test crop. There was significant weed pressure in the bare ground plots at both locations over both years, indicating viable weed seed banks at the field sites. Even so, weed pressure was minimal across mulch treatments at both locations over both years because the mulches remained sufficiently intact during the growing season. The exceptions were Naturecycle in 2015 at both locations because of the splitting of the mulch and consequently higher percent soil exposure (PSE), and the penetration of all the plastic mulches at Knoxville by nutsedge (Cyperus sp. L.); nutsedge did not penetrate WeedGuardPlus. At Mount Vernon, overall pumpkin yield across both years averaged 18.1 t·ha−1, and pumpkin yield was the greatest with PE, Exp. PLA/PHA, BioAgri, and Naturecycle (19.9–22.8 t·ha−1), intermediate with Organix and WeedGuardPlus (15.3–18.4 t·ha−1), and the lowest for bare ground (8.7 t·ha−1). At Knoxville, overall pumpkin yield across both years averaged 17.7 t·ha−1, and pumpkin yield did not differ because of treatment (15.3–20.4 t·ha−1). The differences in yield between treatments at Mount Vernon were likely because of differences in the soil temperature. At 10 cm depth, the average soil temperature was 1 °C lower for bare ground and WeedGuardPlus as compared with PE mulch and plastic BDMs (20.8 °C). In contrast, soil temperatures were generally higher (25.2 to 28.3 °C) for all treatments at Knoxville and more favorable to crop yield compared with Mount Vernon. Forty-two percent to 59% of pumpkin fruit had mulch adhesion at harvest at Mount Vernon, whereas only 3% to 12% of fruit had mulch adhesion at Knoxville. This difference was because of the location of fruit set—at Mount Vernon, most of the fruit set was on the mulch whereas at Knoxville, vine growth was more extensive and fruit set was mostly in row alleys. Fruit quality differences among treatments were minimal during storage across both locations and years except for total soluble solids (TSS) in 2016, which was lower for bare ground and WeedGuardPlus compared with all the plastic mulches. Taken overall, these results indicate that pie pumpkin grown with BDM has fruit yield and quality comparable to PE mulch; however, adhesion of some BDMs on fruit could affect marketable yield. Furthermore, paper mulch appears to prevent nutsedge penetration.

Free access

Planting floricane-fruiting red raspberry (Rubus ideaus L.) propagated through tissue culture (TC) is becoming increasingly popular in the Pacific Northwest. However, there is a challenge associated with their establishment compared with traditional planting materials (dormant roots and canes), especially regarding weed management due to their sensitivity to herbicides. In addition, there has been an increased interest in late summer planting compared with traditional spring planting because growers find improved establishment in late summer planting. Although polyethylene (PE) and biodegradable plastic mulches (BDMs) have demonstrated excellent weed control and increased plant growth and yield in spring-planted TC raspberry, their impacts in late summer plantings are still unknown. The overall objective of this study was to investigate whether PE mulch and BDMs have similar effects on weed management and raspberry growth and yield in late summer plantings as in spring plantings. One PE mulch, four BDMs (BASF 0.5, BASF 0.6, Novamont 0.5, and Novamont 0.6), and a bare ground (BG) control were evaluated in a commercial ‘WakeHaven’ raspberry field planted in Aug. 2017. Mulch performance [percent soil exposure (PSE)], mulch mechanical properties (elongation and breaking force), soil temperature and moisture, plant growth, fruit yield and quality, and weed suppression were measured from 2017 to 2019. Average PSE was 1.4% and 2.0% to 15.0% by Dec. 2017 in the PE and BDM treatments, respectively. PE mulch generally had greater elongation and breaking force than BDMs. All BDMs were removed by Mar. 2018 because of the damage caused by on-farm activities and strong winds. Although average primocane height was greater for plants grown with PE mulch compared with all the other treatments except BASF 0.5 in Sept. 2018, there was no difference in yield between PE and the BG treatments, potentially because of cold damage on the buds in PE plots. There were no weeds in any of the mulched treatments in Sept. and Oct. 2017 and in PE mulch in Sept. 2018. In contrast, the BG plots had 51, 51, and 266 weeds/m2, respectively, and required handweeding and herbicide applications. In addition, early season application of herbicides to suppress primocane emergence was not required in the PE plots. Overall, PE mulch could be a viable tool for growers planting raspberry in late summer. The suitability of BDMs with similar thicknesses and formulations as used in this experiment is uncertain for late summer plantings because of the damage caused by on-farm activities and strong winds.

Open Access

Tissue nitrate (NO3) concentration (TNC) in leafy greens generally decreases with increasing light intensity and photoperiod in controlled environment studies. Harvesting late in the day has been recommended as a way to produce leafy greens with lower TNC, although data from field research do not support this recommendation. This study investigated the effect of time of day of harvest on TNC in lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) grown in the field during the summer at Pullman, WA (lat. 46° N) and Fairbanks, AK (lat. 64° N). Whole plants were sampled every 2 h on three separate, 24-h harvest dates at each latitude. Plants were dried, ground, and analyzed for NO3-N. At the high-latitude location, TNC decreased linearly during the day (1000 to 2300 hr) on all three dates for spinach and one for lettuce. At the low-latitude location, TNC decreased linearly during the day (1000 to 1900 hr) on one date and increased linearly during the night (2000 to 0400 hr) on two dates for lettuce. The TNC (average 287 to 607 mg NO3-N/kg fresh weight for lettuce and 141 to 189 mg NO3-N/kg fresh weight for spinach) and magnitude of diurnal fluctuation (generally less than 25%) should not pose a human health risk regardless of when plants are harvested.

Free access

This study was designed to determine the efficacy of canker excision (CE) followed by a subsequent application of cauterization (CAU) and/or fungicide treatment to the excised area for the management of anthracnose canker (caused by Neofabraea malicorticis) on cider apple (Malus ×domestica) trees. Three experiments were conducted from 2015 to 2017, with one experiment each year, in an experimental cider apple orchard in western Washington where trees were naturally infested with N. malicorticis. Treatments were applied once in December and data were collected January through March. Treatments in the 2015 experiment were CE + CAU, CE + CAU + copper hydroxide, CE + 0.5% sodium hypochlorite, Bordeaux mixture (BM) only, and CE + copper hydroxide (control). The 2016 experiment included the same treatments as in 2015 plus one additional treatment, CE + BM. In 2017, one additional treatment was added, CE only, and CAU treatments were removed as they caused significant injury to the trees. Canker size was measured pretreatment, and the treated canker or excised area was measured posttreatment every 2 weeks for 13–15 weeks. Compared with pretreatment, cankers treated with BM did not increase in size, while the excised area treated with CAU increased 28-fold in size on average, and the excised area treated with 0.5% sodium hypochlorite or copper hydroxide increased up to 4-fold in size. Each year new cankers developed in all treatments 13–15 weeks after treatment application, at a time of year when there should not be any spores present to cause new infections. Dark brown streaking, indicative of the disease, was observed in the tissue below the intact or excised cankers 15 months after treatment application all years. Although N. malicorticis was not isolated from symptomatic tissue, symptoms were observed in all treatments including where cankers had not been excised and there was no wounding of the cambium tissue. Findings from this study indicate that of the treatments evaluated, the application of copper hydroxide after CE was the most effective for limiting the number of new cankers, but it did not limit expansion of the excised area. Additional physical and fungicidal strategies need to be tested for effective management of anthracnose canker.

Free access

Biodegradable mulches (BDMs) provide a unique advantage to growers in that they can be tilled into the soil after use, eliminating disposal costs that include time, labor, and equipment needs. Biodegradation of BDMs in the soil can be assessed by the presence of visible mulch fragments; although this is not a direct measure of biodegradation, it provides an initial estimation of mulch biodegradation. We carried out three field experiments to develop a protocol for quantifying BDM fragments in the soil after soil incorporation of mulch. Expt. 1 was done at Mount Vernon, WA, and Knoxville, TN, using five BDMs in four replications, including a polyethylene (PE) mulch reference treatment (three replications and at Mount Vernon only), and a ʽCinnamon Girl’ pumpkin (Cucurbita pepo) test crop. At the end of the growing season, mulches were tilled into the soil to a depth of 6 inches and within 16 days, five soil samples were collected with a golf hole cutter (4 inches diameter and 6 inches deep). Fifty-nine percent of the PE mulch fragments were recovered from the reference treatment. Among the remaining treatments, there was a high plot-to-plot variation as to the percent of the BDM recovered (3% to 95% at Mount Vernon, 2% to 88% at Knoxville). To exclude the possibility of mulch degradation impacting mulch recovery, in Expts. 2 and 3 (at Mount Vernon only), one BDM was laid, then tilled into the soil and sampled using the same sampling core as in Expt. 1, but all in 1 day. In Expt. 2, 15 soil samples were collected per plot, which recovered 70% of the mulch, and in Expt. 3, the entire plot was sampled by collecting 128 soil samples per plot, which recovered 62% of the mulch. In summary, sampling with a relatively large core recovered less than 70% of tilled-in mulch, there was high variability between plots within each treatment because of uneven distribution of the mulch fragments in the plot, and even 50 samples per plot did not provide an accurate estimate of the amount of mulch remaining in the field. Thus, soil sampling with a large core was ineffective, and new sampling methods are needed to assess the amount of BDM remaining in the field after soil incorporation.

Full access

Machine harvest of ‘Brown Snout’ specialty cider apple (Malus ×domestica) has been shown to provide yield and juice quality characteristics similar to that of hand harvest. In this 2-year study, the sensory perception (color, aroma, flavor, mouthfeel, taste, and aftertaste) of ciders produced from machine-harvested and hand-harvested fruit that were ambient stored (56 °F) 0–4 weeks postharvest were compared using a trained panel and electronic tongue (e-tongue). For nearly all sensory attributes evaluated, the trained panelists scored the 2014 machine-harvested samples higher than the 2014 hand-harvested samples. Some of the key sensory differences included a darker color, a more astringent and heated mouthfeel, and a more sour taste of the machine-harvested samples than the hand-harvested samples. Trained panelists perceived no differences due to the harvest method among the 2015 samples for any of the sensory attributes evaluated. The e-tongue demonstrated good discrimination (index value = 95) of 2014 samples, but poor discrimination (index value = −0.5) of 2015 samples, mirroring the year-to-year variation experienced by the trained panelists. Overall, the e-tongue demonstrated a response to metallic and sour that was more associated with the machine-harvested samples and a response to sweet and umami that was more associated with the hand-harvested samples. These results demonstrate that cider made from machine-harvested fruit can have a different sensory profile than cider made from hand-harvested fruit. A consumer tasting panel should be conducted next to provide an indication of market response to the differing sensory profiles, qualifying the impact of harvest method. Results also indicate that ambient storage (56 °F) of fruit up to 4 weeks may not impact cider sensory attributes; however, cider apple growers should avoid ambient storage of machine-harvested fruit given the significant yield losses demonstrated in previous studies. Variation in cider quality due to year of harvest was most likely a result of differences in the hand-harvest technique between the 2 years, specifically more fruit bruising in 2014 than in 2015, demonstrating the importance of harvesting fully mature fruit with a standard protocol so as to supply a consistent raw material to cider producers. The e-tongue produced variable results compared with trained panelists and more development is needed before it can be incorporated into cider sensory evaluation protocol.

Full access

Anthracnose canker, caused by Neofabraea malicorticis, threatens the sustainability of cider apple (Malus ×domestica) production in the maritime climate of western Washington. In the short-term, the disease reduces overall orchard productivity and in the long-term it reduces an orchard’s economic life span. The disease is difficult to manage using cultural practices, and information on fungicide efficacy is limited and contradictory. To address this situation, a 2-year study was conducted to evaluate efficacy of zinc (4.49 lb/acre), basic copper sulfate (2.49 lb/acre), captan (2.94 lb/acre), thiophanate-methyl (0.69 lb/acre), pyraclostrobin plus boscalid (0.38 lb/acre), and combinations of these fungicides to manage anthracnose canker infection in young cider apple trees cultivated in a maritime climate. Trees used in the first year of the study (2016) were found to be infected by anthracnose canker on receipt, so the first year was a measure of disease control and the second year (2017) was a measure of disease prevention. In 2016, when fungicide treatments were applied every 3 weeks from March through October, none of the treatments evaluated inhibited the development of new infections or the expansion of existing cankers (77% increase in canker size on average for all treatments). In 2017, when fungicide treatments were applied every 3 weeks from February through April, two to three new cankers were observed 3 weeks after final treatment application for all treatments. Results from this study demonstrate that the current fungicides recommended for control of anthracnose canker are not reliably effective in the orchard environment of northwest Washington. Future studies should assess the fungicides evaluated in this study applied in rotation with additional systemic fungicides.

Open Access

Consumer demand for organic and sustainably produced products has increased the interest in organic wine grape (Vitis vinifera) production. However, organic production can be challenging, and weed management is a critical issue during the establishment of an organic vineyard. In 2009, the effectiveness of five cover crop treatments and cultivation regimes was evaluated for two years for weed control in a newly established organic vineyard of ‘Pinot noir précoce’ and ‘Madeleine angevine’ grape cultivars in northwestern Washington State. Alleyway management treatments were cultivation in alleyways with hand weeding in the vine row (control), grass cover crop which included perennial ryegrass (Lolium perenne ssp. perenne) and red fescue (Festuca rubra ssp. arenaria) seeded in the alleyway and in-row tillage with a specialty offset-type cultivator, winter wheat (Triticum aestivum) cover crop with in-row string-trimming, austrian winter pea (Pisum sativum ssp. sativum var. arvense) cover crop with in-row string-trimming, and winter wheat–austrian winter pea cover crop mix with in-row string-trimming. In 2009, weed dry biomass was lowest in the alleyway of the control (0.8 g·m−2) and offset cultivator treatments (6.3 g·m−2) on 3 Aug. and tended to be lowest in the alleyway of the control (4.8 g·m−2) and offset cultivator treatments (16.0 g·m−2) on 27 Sept. In the second year of establishment (2010), winter wheat and austrian winter pea were eliminated from the plots by mid-July, and white clover (Trifolium repens) and perennial ryegrass were the dominant weed species and accounted for a majority of the total weeds. On average over the two-year period, the control treatment required the most time for alleyway management (92 h·ha−1) followed by the offset cultivator treatment (64 h·ha−1), while the winter wheat, austrian winter pea, and winter wheat–austrian winter pea mixture required 32 to 42 h·ha−1. ‘Madeline angevine’ produced more shoot growth than ‘Pinot noir précoce’ in Sept. 2010 (42.3 and 25.9 cm respectively), and shoot growth of both cultivars in the control treatment was significantly longer (125.0 cm) than under any other treatment (55.4 to 93.0 cm), illustrating the importance of weed control during vineyard establishment. In this study, the most effective weed management regime, although also the most time consuming, included a vegetative-free zone around the vines (e.g., in-row) maintained by hand weeding and a cultivated alleyway.

Full access

Two studies were performed in Mount Vernon, WA, to identify bulb fennel (Foeniculum ×vulgare) cultivars and seeding practices best suited for the region. The first study evaluated 13 cultivars (Bronze, Finale, Florence, Genesi, Idillio, Orazio, Orion, Perfection, Preludio, Solaris, Tauro, Tenace, and Zefa Fino) over the course of 2 years; during the second year, the additional main factor of the seeding date was included. The second study evaluated three bulb fennel cultivars (Finale, Tauro, and Zefa Fino), four seeding dates (17 May, 31 May, 14 June, and 28 June 2018), and two planting methods (direct and transplant). Results of the two studies demonstrated that ‘Finale’, ‘Orazio’, ‘Preludio’, ‘Solaris’, and ‘Tenace’ had the greatest bulb production rate and yield and good bulb quality that met marketability standards. ‘Genesi’, ‘Orion’, and ‘Perfection’ had good bulb production during only 1 of the 2 years, whereas ‘Bronze’, ‘Florence’, ‘Idillio’, and ‘Zefa Fino’ had very low bulb productivity both years due to bolting. ‘Perfection’ and ‘Tauro’ exhibited internal cracking both years (incidence rates of 9.5% and 12.8%, respectively). The first harvest was 94 to 112 days after seeding during the first study. Direct seeded bulb fennel required 32 fewer days to harvest than transplanted bulb fennel during the second study. The average bulb circumference was 28.1 cm, with little variation between studies. Bulb tenderness for both studies was 617 g-force, on average, and the soluble solids concentration of bulbs in both studies was 4.9%. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry based on 38 tentatively identified compounds demonstrated no difference in the phenolic content of bulb fennel due to the cultivar. In conclusion, bulb fennel cultivars well-suited for production in northwest Washington were identified and direct seeding was demonstrated to be a better planting method than transplanting.

Open Access

The functionality of biodegradable mulch can be evaluated in agricultural field settings by visually assessing mulch intactness over time (a measure of deterioration), but it is unclear if mulch deterioration is indicative of mulch degradation as measured by mechanical properties (like breaking force and elongation). This 3-year study (2010–12) examined mulch percent visual deterioration (PVD) during the summer growing season in open-field and high tunnel production systems, and compared these to mulch mechanical properties at mulch installation (12–30 May), midseason (22 July–9 Aug.), and season end (6–25 Oct.), to determine if the field-based measures reliably predict degradation as revealed by changes in mulch mechanical properties. Four different types of biodegradable mulches [two plastic film mulches marketed as biodegradable (BioAgri and BioTelo); one fully biodegradable paper mulch (WeedGuardPlus); and, one experimental spunbonded plastic mulch designed to biodegrade (SBPLA)] were evaluated against a standard nonbiodegradable polyethylene (PE) mulch where tomato (Solanum lycopersicum L. cv. Celebrity) was planted as the model crop. Each year for the 3 years, PVD increased earlier for WeedGuardPlus than the other mulches in both the high tunnel and open field, and WeedGuardPlus had the greatest PVD in both high tunnels and the open field (6% and 48%, respectively). Mechanical strength of WeedGuardPlus also declined by the end of the season both in the high tunnel (up to 46% reduction) and in the open field (up to 81% reduction). PVD of BioAgri and BioTelo reached a maximum of 3% in the high tunnel and 28% in the open field by the end of the season. Mechanical strength of BioAgri and BioTelo did not change over the course of the season in either the open field or high tunnel, even though the ability of these mulches to elongate or stretch declined 89% in the open field and 82% in the high tunnel. SBPLA and PE mulches did not show a change in PVD or mechanical properties in either the high tunnel or the open field. Overall, PVD was three to six times greater by midseason in the open field than in the high tunnels. Although there were significant relationships between visual assessments and various mechanical properties for each mulch except SBPLA, the relationships differed for each mulch when evaluated separately and had coefficients of determination (R 2) below 30%. Furthermore, PVD overestimated mechanical deterioration of BioAgri and BioTelo. Results of this study indicate that mulch visual assessments may reflect general trends in changes in certain mechanical properties of the mulch; however, visual assessment and mechanical properties provide different information on deterioration. Each should be used as needed, but not as a substitute for each other.

Free access