Search Results

You are looking at 41 - 50 of 81 items for

  • Author or Editor: Carl Sams x
Clear All Modify Search

The viability of Penicillium expansum Link conidia in sporulating culture declined rapidly when exposed to 38 °C, and when conidia were exposed to 38 °C prior to inoculation of apple fruits (Malus ×domestica Borkh.), the resulting lesions were smaller than those on fruit inoculated with nonheated conidia. `Gala' apples were heated after harvest (38 °C for 4 days), pressure infiltrated with a 2% solution of CaCl2, or treated with the antagonist Pseudomonas syringae van Hall, alone or in combinations to reduce postharvest decay caused by Penicillium expansum. After up to 6 months in storage at 1 °C, no decay lesions developed on fruit that were heated after inoculation with P. expansum, or any combination of P. expansum, antagonist, or Ca. Parallel lots of heat-treated and nonheated fruit that were either infiltrated or not infiltrated with Ca were stored up to 6 months. They were then inoculated with P. expansum alone, or with the antagonist followed by P. expansum. Prior heat treatment did not influence lesion size. Calcium alone, the antagonist alone, and heat plus Ca all reduced the incidence of decay by ≈25%, whereas heat plus the antagonist reduced it by 70%. Calcium plus the antagonist or Ca plus the antagonist and heat reduced decay incidence by 89% and 91%, respectively. The integrated strategy of heat-treating fruit, followed by Ca infiltration and then treatment with an antagonist, may be a useful alternative to controlling postharvest decay with fungicides.

Free access

Soybean [Glycine max (L.) Merrill] oil was applied to apple trees [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] as a summer spray in six studies to determine if it controls European red mites [Panonychus ulmi (Koch.)], how it affects net CO2 assimilation (A), and if it causes phytotoxicity. Sprays of 0.5%, 1.0%, and 1.5% soybean oil {TNsoy1 formulation [soybean oil premixed with Latron B-1956 (LAT) spreader-sticker at 10 oil: 1 LAT (v/v)]} reduced mite populations by 94%. Sprays of 1% and 2% soybean oil reduced mite populations to three and four mites per leaf, respectively, compared to 25 per leaf on water-sprayed plants. Soybean oil concentrations of 1.0% and 1.5% applied to whole trees reduced A for less than 7 days. Phytotoxicity did not occur when soybean oil was applied with an airblast sprayer at concentrations of 1.0% and 1.5% or with a mist bottle at 2%. Phytotoxicity occurred when soybean oil was applied with a mist bottle at 4% and 6%, which left soybean oil leaf residues of 0.22 to 0.50 mg·cm-2. No phytotoxicity occurred with 4% SunSpray, which resulted in a mean leaf residue of only 0.13 mg·cm-2. Spraying 1% soybean oil tended to give better mite control than 1% SunSpray Ultra-Fine oil, but caused greater oil residues and a greater reduction in A.

Free access

Applications of soybean oil to dormant peach [Prunus persica (L.) Batsch] trees were tested for prebloom thinning of flower buds in five separate experiments. Data were combined from experiments in which 2.5% to 20% emulsified soybean oil was sprayed on `Belle of Georgia' or `Redhaven' trees. The number of dead flower buds was concentration-dependent with maximum bud kill of 53% occurring with application of 12% soybean oil. The amount of thinning was fairly consistent from year to year, ranging from 34% to 51% when 10% soybean oil was applied, but was less consistent when 5% was applied, ranging from 6% to 40%. Overthinning by midwinter applications of soybean oil occurred in one experiment when bud mortality on nontreated trees was 40% due to natural causes. Mild to moderate spring freezes occurred in three experiments, but did not reduce yield more in soybean oil–thinned than in nontreated trees. Flower bud survival was improved when trees were sprayed with 10% or 12% soybean oil prior to a –4 °C spring frost. Applications of soybean oil to dormant trees thinned flower buds, reduced the amount of hand thinning required, and hastened fruit maturity.

Free access

The objective of this study was to examine efficacy of soybean oil dormant sprays to manage San Jose scale (Quadraspidiotus perniciosus Comstock) on apple (Malus ×domestica Borkh.). On 14 Feb. 1994 and again on 20 Feb. 1995, `Bounty' apple trees were: 1) left unsprayed (control) or sprayed to runoff with: 2) 3% (v/v) or 3) 6% degummed soybean oil with 0.6% (v/v) Latron B-1956 sticker spreader, or 4) 3% 6E Volck Supreme Spray petroleum oil. Crawler emergence occurred 17 May-28 June, 7 July-30 Aug., and 7 Sept.-24 Oct. 1994. First-generation crawler emergence had started by 8 May in 1995. Both 3% petroleum oil and 6% soybean oil sprays reduced the numbers of first- and second-generation crawlers by 93% in 1994 and first-generation crawlers by 98% in 1995. The 3% soybean oil treatment reduced first- and second-generation crawlers by 60% in 1994 and first-generation crawlers by 83% in 1995. In 1995, apple fruit infestations by first-generation scales on the 3% soybean-, 6% soybean-, and 3% petroleum oil-treated trees did not differ significantly, but all fruit were significantly less infested than the controls.

Free access

Consumer interest in Edamame (edible soybean) is increasing due to reported health benefits associated with diets high in soy. The purpose of this study was to compare four varieties of edible soybean grown at four plant spacings on three planting dates. The lines were grown at the Plateau Research and Education Center in Crossville, Tenn. They were analyzed for horticultural traits and isoflavone content. All lines were at the R6 stage. Fresh weight of pods, weight of 200 pods per plot, the number of seeds per 200 pods, and the weight of 100 seeds were recorded from two-row plots (6.10 m x 1.52 m). A significant (P < 0.001) difference was found for fresh weight among planting dates. The May planting had the highest mean fresh weight (3118 g/plot), followed by the June (3068 g/plot) and July (2131 g/plot) dates. The weight per 100 seeds was significantly different (P < 0.001) for planting date and genotype. May seed weight was highest at 49 g, followed by June at 45 g, and July at 42 g per 100 seeds. `Gardensoy-43' was the highest-yielding variety, with a mean of 3253 g/plot. It was followed by `TN00-60' and `TN03-349', with mean fresh weights of 2730 and 2723 g/plot, respectively. The line `TN5601T' had the lowest mean fresh weight of 2389 g/plot. Both fresh weight (P < 0.001) and weight per 100 seeds (P < 0.05) were significantly different among plant spacings. Twenty-six plants per meter within rows yielded the highest total fresh weight per plot (3071 g), but had the lowest mean weight per 100 seeds (43 g). Spacing three plants per meter within rows resulted in the highest weight per 100 seeds (48 g), but the lowest fresh weight per plot (2122 g). Isoflavone content will be measured for each variety, planting date, and spacing.

Free access

`Legacy' southern highbush blueberry plants at the Middle Tennessee Research and Education Center were sprayed on 22 Feb. 2005 with 0%, 6%, 9%, or 12% soybean oil. The treatments were arranged in a randomized complete-block design with five replications. Flower bud abortion was evaluated by sampling 25 flower buds/plant on 21 Mar., dissecting, and visually examining buds for browning of ovaries. Flower bud phonology was rated periodically until first bloom and then percentage of open bloom was rated every 2 to 3 days. Fruit were harvested for yield and 50-berry samples taken weekly for the first 4 weeks to determine berry size. Sprays of 6%, 9%, and 12% soybean oil delayed the 50% open bloom date of `Legacy' by 2, 4, and 9 days, respectively, but also caused 9%, 35% and 87% mortality of flower buds. `Legacy' bushes sprayed with 0%, 6%, 9% and 12% soybean yielded 11.6, 13.7, and 10.3, and 4.5 lb/bush, respectively. Berry size was increased by 14% to 23% by oil sprays. In a second experiment, `Climax' blueberries in a commercial planting in Spring City, Tenn., were sprayed on 4 Mar. with water, 5% TNsoy14 (96% soybean oil, a.i.), 500 ppm abscisic acid (ABA) (Valent BioSciences Corp., Long Grove, Ill.), or the combination of oil and ABA (seven replications). Flower bud development and bloom were rated as previously described. Spraying 5% TNsoy14 or 500 ppm ABA delayed the 50% open bloom date by 1 day and the combination of the two delayed bloom by an additional day. On 5 Apr., `Climax' bushes sprayed with 5% TNsoy14, 500 ppm ABA, and 5% TNsoy14 plus 500 ppm ABA had 49%, 41%, and 20% open bloom compared to 70% open bloom on control plants. The 5% oil, 500 ppm ABA, and the oil plus ABA treatments did not significantly affect crop load or berry size.

Free access

A study was conducted to quantify volatiles generated from Indian mustard (Brassica juncea L. Czerniak) tissue incorporated into soils under controlled conditions. Mustard residues were incorporated into noncovered and covered soils that varied by texture, temperature, moisture, pH, or sterility (autoclaved or nonautoclaved). Sandy loam soil had 38% more allyl isothiocyanate (AITC) than clay loam soil. AITC concentration in 45 °C soil was 81% higher than in soil at 15 °C, and 56% higher in covered compared to noncovered treatments. The microbial catabolism of AITC was suggested by the result that AITC concentration in autoclaved soils was over three times that measured in nonautoclaved soils. The highest AITC level detected (1.71 μmol·L–1) occurred in the autoclaved covered soil. Several factors also influenced CO2 evolution. At 30 or 45 °C, CO2 concentration was at least 64% higher than at 15°C. The covered soil had over twice the CO2 found in the noncovered soil, and the nonautoclaved soil treatment yielded twice the CO2 measured in the autoclaved soil. There were no main effect differences among soil moisture, soil pH, and soil texture treatments for CO2 concentrations. This information could be helpful in defining ideal soil conditions for field scale experiments. Additionally, this study demonstrates a sampling technique for testing fumigation potential of biofumigation and solarization systems that may have the potential to replace methyl bromide.

Free access

There are three objectives for this study: to determine the within-row plant spacing and time of planting that will produce optimal yields and seed isoflavone content, to explore the feasibility of incorporating edamame soybeans in a double-cropping system with strawberries, and to study the potential as an edamame soybean of newly identified line TN03-349. TN03-349 was planted into black plastic, irrigated strawberry beds in an East Tennessee location at five different within-row spacings (7.62, 15.24, 30.48, 60.96, and 121.92 cm) in 2004 and 2005. Another strawberry bed planting was located in Middle Tennessee in 2005. Four soybean lines and two planting dates were used in the Middle Tennessee experiment. Two lines are high yielding soybean checks, while the third is a commercially available edamame cultivar. The fourth line is TN03-349. Planting dates were 24 May and 14 June 2005. A final field experiment utilized the same four soybean lines and planting dates with an additional planting on 6 July 2005. Four different within-row spacings were used, as well. All experimental plantings were harvested at both the R6 (green) and R8 (dry) stages. Preliminary data indicates that isoflavone content was not affected by within-row spacing in the 2004 East Tennessee strawberry bed experiment. Yield data from the same experiment seems to indicate that soybeans were able to compensate for fewer plants per row at the 7, 62, 15.24, and 30.48 cm spacings. Yield dropped sharply at the 60.96 and 121.92 cm treatments. Line TN03-349 produced beans with large seed size and nutty flavor, traits that are essential for edamame soybeans.

Free access

Biofumigation is an alternative to traditional methods of soil sterilization such as methyl bromide. Biofumigation utilizes volatile, pesticidal compounds in soil incorporated plant material from various Brassica species. Three experiments were conducted to study the degradation of allyl isothiocyanate (AITC) generated from the breakdown of glucosinolates present in Oriental mustard (Brassica juncea L. Czerniak). Mustard seed meal was incorporated into a sandy clay loam soil in all experiments. In the first experiment, samples were hydrated and then held in an incubator at 20 ± 0.2 °C. Samples were taken periodically for 7 days or until AITC was not detectable. For the second experiment, hydrated samples were removed from the incubator after 4 hours and 5 mL of ethyl acetate was added. The samples were then placed in a refrigerator at 4 ± 0.2 °C and samples were taken periodically over 77 days. For the third experiment, samples were taken from a strawberry plot experiment grown in a randomized complete block design. Samples were taken and 5 mL of ethyl acetate was added. Then samples were placed into a cooler until returning to the laboratory. The incubator experiment was repeated and showed that the highest concentration of AITC occurred between 2 and 8 hours after hydration. The storage experiment showed a stable relationship between time and AITC degradation. AITC was still present after 77 days. The strawberry plot experiment showed rapid AITC degradation similar to the incubator experiment. Future research will be done to confirm the effects of temperature and glucosinolate content on the amount of allyl isothiocyanate present.

Free access