Search Results

You are looking at 41 - 50 of 78 items for

  • Author or Editor: Bruce W. Wood x
Clear All Modify Search

The host-parasite interaction between the black pecan aphid (BPA) [Melanocallis caryaefoliae (Davis)] and pecan [Carya illinoensis (Wangenh.) K. Koch] was investigated. Three years of field observations of the ability of BPA populations to induce chlorotic blotches, or visual damage, on 32 pecan cultivars revealed considerable variation in cultivar susceptibility to BPA damage. Among the most commonly grown cultivars, `Sioux', `Cape Fear', `Farley', `Cowley', `Grabohls', and `Barton' exhibited the least damage, whereas `Choctaw', `Oconee', and `Sumner' exhibited the greatest, with `Sioux' and `Choctaw' exhibiting the greatest extremes in susceptibility. Subsequent evaluation indicated that the foliage of pecan genotypes can exhibit an antibiotic-like effect, resulting in the suppression of resident BPA populations. However, the relationship between the degree of this antibiotic effect and the degree of damage exhibited by trees, or field tolerance, was negligible (r = -0.10). For example, while `Choctaw' foliage greatly suppressed BPA population growth, this population was able to inflict relatively severe damage to leaves. An evaluation of feeding preference indicated that BPA alate viviparae (winged females) preferentially feed upon host cultivars on which they have been previously feeding. This feeding preference was eliminated by rinsing leaves with distilled water; hence, a water soluble factor(s) appears to be involved in host preference.

Free access

Genetic variation among pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars was studied using randomly amplified polymorphic DNA (RAPD) markers. Using a combination of primers, a unique fingerprint was produced for each of the pecan genotypes studied. The genetic relatedness between 44 cultivars was estimated using more than 100 RAPD markers. Genetic distances based on the simple matching coefficient varied from 0.91 to 0.59. The phenetic dendogram developed from cluster analysis showed relatively weak grouping association. However, cultivars with known pedigrees usually grouped with at least one of the parents and genetic similarity estimates appear to agree with known genetic relationships. Using RAPD information in determining genetic relationships among pecan cultivars with unknown or questionable pedigrees and the integration of that knowledge into the breeding program is discussed.

Free access

Pecans (Carya illinoinensis) are full of unsaturated fatty acids, which are subject to oxidative cleavage. This results in the development of rancid off-flavors, which render the nuts unmarketable. For this reason, pecans must be stored under costly refrigerated conditions. Furthermore, pecans usually undergo retail distribution and marketing at ambient conditions, which promote development of off-flavors. Application of cellulose-based edible coatings reduced off-flavor, and improved overall flavor scores while adding shine to the nuts during 14 months of storage under ambient conditions. Development of rancidity involves hydrolysis of glycerides into free fatty acids, oxidation of double bonds of unsaturated fatty acids to form peroxides and then autooxidation of the free fatty acids once the peroxides reach a sufficient level to perpetuate this reaction. One of the products of autooxidation is hexanal which is, thus, a good indicator of rancidity. Analysis of pecans by gas chromatography revealed that hexanal levels were reduced in coated nuts by 5- to over 200-fold compared to uncoated controls, depending on the coating treatment. Some of the coating treatments affected nut color, but overall flavor and appearance were improved by certain formulations.

Free access

Water stage fruit split (WS) is an erratic and complex problem often causing major crop losses to susceptible pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. This study identified two episodes of WS for `Wichita' pecan—a highly susceptible cultivar. The previously recognized precipitation-induced fruit splitting is the major episode; however, a previously unrecognized precipitation-independent, minor episode can also occured before the major episode. This minor episode was associated with the low solar irradiance and high relative humidity—conditions commonly associated with August rains. The crop characteristics of affected trees also influenced WS in that WS increased as crop load per tree increased. Fruits were also more likely to exhibit WS if located within the lower tree canopy. Treatment of foliage with an antitranspirant immediately before split-inducing conditions increased WS. Maintenance of moist soils for ≈2 weeks before WS-inducing conditions substantially reduced WS-related crop losses. These findings help to explain the erratic nature of WS and indicate that maintenance of trees in a well-watered state for ≈2 weeks before the initiation of shell hardening may substantially reduce WS-related crop losses in certain years.

Free access

Bearing pecan [Carya illinoinensis (Wangenh.) K. Koch] trees overly stressed by crop load and premature autumn defoliation either died or were severely damaged by -3°C in mid-November. Orchard damage was associated with death of tree roots during the dormant season. Exposure of stressed trees to -5°C in mid-March produced an atypical, but distinct, bottom-to-top-of-canopy gradient in bud death and reduced growth of shoots and foliage that was consistent with the pattern of reduced carbohydrate reserves of associated support shoots. Additionally, the foliage of damaged trees contained higher concentrations of N, P, K, Ca, Mg, Mn, Fe, and B. Trees did not exhibit traditional symptoms of cold damage, thus these findings extend cold injury diagnostic criteria to include both root and tree death during the dormant season and also a distinct gradient in shoot death during early spring. Damage by cold appears to be preventable by avoiding excessive tree stress due to overcropping and premature defoliation.

Free access

Orchard trees of pecan [Carya illinoinensis (Wangenh.) K. Koch] were subjected to combinations of cultural practices inducing differential physiological states so as to assess the potential for culture-related impact on damage to trees by key arthropod pests. Leaf N concentration, leaf water status, and crop load all affected foliar damage by black pecan aphids [BPA; Melanocallis caryaefoliae (Davis)] and pecan leaf scorch mite [PLSM; Eotetranychus hicoriae (McGregor)], as well as second-flush shoot growth. Damage to first-flush foliage in the late season by BPA generally diminished as leaf water status and leaf N concentration increased, but intensified with a reduction in crop load. Conversely, foliage damage by PLSM increased with elevated leaf water status and N concentration, but was unaffected by crop load. First- and second-order interactions for all combinations of cultural treatments conferring differential physiological states affected damage by pests and induction of second-flush shoot growth. Arthropod-induced defoliation on trees receiving highly favorable cultural practices—those producing high leaf N, high leaf water availability, and low crop load—was greater than on trees receiving minimal or lesser cultural inputs. Thus, cultural practices influencing leaf water status, N status, or crop load potentially act and interact to produce both desirable and undesirable side-effects on damage incurred by certain arthropod pests and therefore merit consideration in efforts to develop improved integrated pest management strategies.

Free access

Peach tree short life (PTSL) is associated with the presence of ring nematode, Mesocriconema xenoplax, and poor orchard management practices. The ability of postplant nickel (Ni) foliar application to suppress M. xenoplax population density and thereby prolong survival of peach trees on a PTSL site infested with M. xenoplax was investigated from 2004 to 2011. For this study, the site was divided into plots, which received the following treatments: 1) Ni (foliar-applied); 2) methyl bromide fumigation (MBr); and 3) an untreated control. Peach trees were planted into all plots in Mar. 2005 and the foliar Ni treatment was applied three times in 2005 and 2006. Nickel did not detectably suppress M. xenoplax populations as compared with MBr fumigation. The protective effect of MBr fumigation in suppressing M. xenoplax population density persisted for 27 months after orchard establishment. Trees receiving multiple foliar Ni applications at 0.45 g·L−1 over 2 years, while exposed to M. xenoplax, exhibited greater PTSL mortality than trees growing in untreated or MBr-fumigated plots. These results suggest that foliar applications of Ni to peach trees, growing on a PTSL site, should be used with caution in commercial orchards because these treatments can deleteriously disrupt tree metabolic/physiological processes sufficient to increase the incidence of PTSL tree mortality.

Free access

Foliar feeding by the black pecan aphid [Melanocallis caryaefoliae (Davis)] can cause tremendous economic losses. Evaluations of black aphids on pecan genotypes indicates that both antixenosis and antibiosis-like resistance mechanisms exists. Tests for antixenosis indicated that aphids possess clear preferences for certain genotypes over others and that this preference can be dependent on a water-soluble chemical component of the leaf surface. Aphids also exhibited a “conditioning preference,” in which they preferentially feed on genotypes from which they originated. Antibiosis tests indicated that pecan genotypes influence the reproductive success of aphids already possessing a feeding adaptation to those same pecan genotypes; therefore, an evaluation of 30 cultivars for antibiosis indicated that populations developed only 20% as fast on `Choctaw' and `Alley' as on `Desirable' and `Success'. No cultivar was observed to essentially prevent aphid reproduction.

Free access

Water-stage fruit-split (WSFS) is a relatively common and often major problem of certain pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. This study evaluates the possibility that the malady can be influenced by improving tree micronutrient nutrition. Foliar sprays of boron (B) and nickel (Ni) to WSFS-susceptible fruit of ‘Cape Fear’ and ‘Sumner’ are evaluated based on the possibility that either B or Ni potentially affects the severity of WSFS exhibited by trees. Although the incidence of WSFS on ‘Cape Fear’ was unaffected by micronutrient sprays, the severity of WSFS was substantially reduced in each of the 3 study years by foliar B application and in 2005 by foliar Ni application. Repeated foliar sprays of Ni also reduced WSFS of ‘Sumner’ fruit. These data indicate that improving either B or Ni nutrition can potentially reduce crop loss resulting from WSFS in certain orchard situations and provides evidence that insufficient availability of B or Ni to developing ovary tissues potentially predisposes developing fruit to WSFS when environmental triggers occur.

Free access