Search Results

You are looking at 41 - 50 of 68 items for

  • Author or Editor: Brian Whipker, x
Clear All Modify Search

Sunflower (Helianthus annuus) has potential as a potted flowering plant due to short crop time, ease of propagation, and attractive flowers but postharvest life is short and plants can grow too tall. Days from sowing to anthesis differed significantly among six sunflower cultivars and ranged from 52 days for `Big Smile' to 86 days for `Elf' and `Pacino.' Height ranged from 6.0 inches (15.2 cm) for `Big Smile' to 14.9 inches (37.8 cm) for `Pacino', postproduction life ranged from 10 days for `Elf' and `Pacino' to 15 days for `Big Smile', and postproduction chlorosis ratings (1 to 5, with 5 the least) ranged from 5.0 for `Teddy Bear' to 4.4 for `Big Smile' after 5 days and 4.2 for `Teddy Bear' to 3.1 for `Sunspot' after 10 days. Promalin (a gibberellin and benzyladenine mixture) applied at 62.5 to 500 ppm (mg·L-1) was not commercially useful in extending postproduction life. Increasing pot size from 4 to 6 inches (10 to 15 cm) in diameter decreased postproduction life and plants in 5-inch-diameter (13 cm) pots were tallest. Pots with three plants flowered more quickly than those with one or five plants and pots with five plants had 1 day shorter postharvest life than those with one or three pots. All cultivars were facultative short-day plants, except for `Sundance Kid', which was day neutral. Storing potted sunflowers at 41 °F (5 °C) for 1 week did not reduce postproduction life, which was 11 to 12 d; however, 2 weeks of cold storage resulted in foliar damage. Three cultivars were found to be most suitable for pot production, `Elf', `Pacino' and `Teddy Bear', with one or three plants per 6-inch pot and sprayed with daminozide (B-Nine) at 8,000 ppm, or drenched with paclobutrazol (Bonzi) at 2 mg/pot (a.i.) (28,350 mg = 1.0 oz).

Full access

Most commercial and university substrate testing laboratories' recommended floriculture nutritional values are based on the saturated media extract (SME) method. With the recent gain in popularity of pour-through nutritional monitoring, alternative recommended values are needed for nutrient analyses based on pour-through extracts. Pour-through nutritional values were compared to the SME values to develop calibration curves and recommended nutritional values. Euphorbia pulcherrima `Freedom Red' Willd. ex Klotzch. were grown for two consecutive growing seasons in 16.5 cm plastic pots with Fafard 4 P root substrate and fertigated with 200, 300, or 400 mg·L-1 N from a 13N-0.88P-10.8K fertilizer. Linear relationships existed and inverse calibration curves for pour-through and SME comparisons were developed for (r 2): EC (0.98), NO3 - (0.98), P (0.97 to 0.99), K (0.99), Ca (0.94 to 0.97), and Mg (0.91). In addition, recommended pour-through substrate value ranges were developed for comparison with SME values. The established calibration curves and pour-through substrate value ranges will allow substrate-testing laboratories to make nutritional recommendations based on pour-through extractions.

Free access

Effects of paclobutrazol and ancymidol on postharvest performance and growth control of potted sunflower (Helianthus annuus L.), zinnia (Zinnia elegans Jacq.) and marigold (Tagetes erecta L.), petunia (Petunia ×hybrida Vilm.) plugs, respectively, were studied. Paclobutrazol was applied as a drench at 0, 1.0, 2.0, or 4.0 mg of a.i. per 15.2-cm pot for sunflower and 0, 0.5, 1.0, or 2.0 mg per 12.5-cm pot for zinnia, while ancymidol was applied at 0, 40, 80, and 160 mg·L−1 with a volume of 0.21 L·m−2 as a foliar spray for marigolds or petunia plug crops. With an increase in paclobutrazol dose or ancymidol concentration, plant growth (plant height and diameter, shoot fresh or dry weight) was controlled for all species tested. Use of 1.0–2.0 mg paclobutrazol per pot produced 21% to 28% shorter plants with 12% to 15% smaller plant diameter, 13% to 19% less shoot fresh weight, 15% to 21% less dry weight, and darker green foliage color for potted sunflower than nontreated plants. Treatment with 1.0–4.0 mg paclobutrazol per pot delayed first wilting by 0.7–1.4 days compared with nontreated plants. For zinnia, 0.5–1.0 mg paclobutrazol controlled plant growth, produced dark green foliage, and extended shelf life by delaying first wilting by 2.6–3.9 days and second wilting by 1.4–2.0 days than nontreated plants. For marigold and petunia plugs, 40–80 mg·L−1 ancymidol provided ample growth control with darker green foliage; however, postharvest longevity was extended only when plugs were sprayed with 160 mg·L−1 ancymidol. During simulated storage and shipping, plant growth retardants maintained darker green foliage for potted sunflower, zinnia, and marigold plugs and prevented postharvest stem elongation of petunia plugs. In summary, use of plant growth retardants effectively controlled excessive plant growth and extended shelf life of potted plants and plugs.

Free access

Chemical plant growth retardants (PGRs) are commonly used to produce compact bedding plants. Few PGRs are labeled for sensitive species because of the concern of excessive restriction of stem elongation or phytotoxicity. Growers are therefore presented with a dilemma: produce untreated plants that may be too tall or risk applying a PGR that can potentially lead to irreversible aesthetic damage to the plant. Nutrient restriction, specifically of phosphorus (P), may be used to control plant height. This study was conducted to determine if restricting P fertilization yielded comparable growth control to plants produced with PGRs. Two cultivars each of new guinea impatiens (Impatiens hawkeri) and angelonia (Angelonia angustifolia) were grown using five fertilizers that varied by P concentration (0, 2.5, 5, 10, and 20 ppm). Half of the plants from each P fertilizer concentration were treated with paclobutrazol at 4 and 5 weeks after transplant for angelonia and new guinea impatiens, respectively. On termination of the experiment, data were collected for height, diameter, and dry weight, which were used to determine a growth index (GI). Angelonia GI values were maximized with 7–9 ppm P, whereas new guinea impatiens GI was maximized with 8–11 ppm P. Concentrations of 3–5 ppm P provided similar height control to plants grown with nonlimiting P and a paclobutrazol application. Concentrations of ≤2.5 ppm P resulted in low-quality plants with visual symptoms of P deficiency. These results indicate that a narrow range of P concentrations may be used to control stem elongation and keep plants compact.

Full access

To produce popular floriculture crops, such as gloxinia (Sinningia speciosa), growers must be equipped with cultural information including the ability to recognize and characterize disorders. Diagnostic criteria for nutrient disorders of gloxinia are absent from current literature. Therefore, gloxinia plants were grown in silica-sand culture to induce, characterize, and photograph symptoms of nutritional disorders. Control plants received a complete modified Hoagland’s all-nitrate solution, whereas nutrient-deficient treatments were induced with a complete nutrient formula minus a single nutrient. Boron toxicity was induced by increasing the element 10-fold higher than the complete nutrient formula. We monitored plants continuously to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and critical tissue concentrations are presented. Of 13 treatments, 10 exhibited symptomology; copper, molybdenum, and zinc remained asymptomatic. Symptoms of nitrogen, phosphorus, potassium, magnesium, and sulfur deficiencies, plus boron toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown in nitrogen, potassium, sulfur, and iron deficient and boron toxic conditions.

Full access

Pythium aphanidermatum is the predominant species causing pythium root rot of commercially grown poinsettia (Euphorbia pulcherrima) in North Carolina. Pythium root rot is primarily managed with strict sanitation practices and preventative fungicide applications. To determine if host resistance could play a role in the integrated management of pythium root rot, information on the susceptibility of commercial poinsettia cultivars is needed. Commercially available poinsettia cultivars were inoculated with P. aphanidermatum 3 weeks after transplant and evaluated for resistance to pythium root rot 2 months later. Thirty-four cultivars were evaluated for resistance in 2014 and 58 cultivars were evaluated in 2015, for a total of 62 cultivars evaluated. Twenty-nine cultivars were evaluated in both years. Most cultivars were susceptible to pythium root rot and none were completely resistant. However, several cultivars demonstrated partial resistance to pythium root rot. Interspecific hybrid cultivars, including Luv U Pink, had a higher level of partial resistance when compared with conventional cultivars. Partial resistance varied across bract color, response time, and plant vigor groupings. Overall, 6 of 13 partially resistant cultivars identified in 2015 had red bracts. These results indicate that growers should be able to choose among several red bract cultivars that have higher-level partial resistance to pythium root rot than others.

Full access

Drench applications of paclobutrazol or uniconazole were applied at doses of 0, 0.0025, 0.005, 0.01, 0.02, or 0.04 mg a.i./pot (28,350 mg = 1.0 oz) to vegetatively propagated `Aurora', `Medallion Dark Red', and `Pink Satisfaction' geranium (Pelargonium ×hortorum L.H. Bailey). Geranium total plant height, leaf canopy height, and plant diameter responded similarly to drench applications of either paclobutrazol or uniconazole. There was a significant quadratic relationship between plant growth regulator (PGR) dose and total plant height and leaf canopy height for `Aurora' and `Medallion Dark Red', with total plant height and leaf canopy height being shorter as paclobutrazol or uniconazole doses increased up to 0.02 mg. However, doses of ≥0.02 mg had little additional effect on total plant height and leaf canopy height. Most of the total height control achieved by the use of PGRs was primarily due to a reduction of leaf canopy height, rather than inflorescence height. Doses of 0.005 to 0.01 mg of either PGR produced marketable sized potted plants of `Medallion Dark Red' and `Pink Satisfaction'. `Aurora', which was the most vigorous cultivar, required doses of 0.01 or 0.02 mg of either paclobutrazol or uniconazole to produce marketable sized potted plants.

Full access

Sages (Salvia sp.) have long been popular as summer annuals, culinary herbs, and landscape perennials. We selected ‘Hot Lips’ hybrid sage [Salvia ×microphylla (Salvia greggii × S. microphylla)], a recently introduced perennial sage, to assess efficacy of the growth regulator flurprimidol for controlling height. Substrate drenches of flurprimidol at 0, 0.25, 0.50, 1.0, 2, and 4 mg per pot were applied using 240 mL of solution per pot on 17 June 2010. Plant height was recorded at treatment, 27 days after treatment (DAT), and 48 DAT. Flurprimidol drench concentrations of 0.25 mg per pot and higher controlled plant height by 20% to 41% 27 DAT and by 26% to 50% 48 DAT. While all treatments at 48 DAT produced a significantly shorter plant, concentrations between 0.25 to 1 mg would provide growers options for controlling plant growth by 26% to 44%. Using concentrations over 1.0 mg did not produce any additional control of height in hybrid sage.

Full access

The objective of this research was to quantify how flurprimidol substrate drenches applied to ‘Nellie White’ easter lilies (Lilium longiflorum) affected height at flowering, time to flower, and flower number. In Expt. 1, size 9/10 ‘Nellie White’ easter lilies were treated with a 4-fl oz drench applied to the surface of the substrate when shoots were ≈3 inches tall providing 0.0, 0.02, 0.04, 0.08, 0.16, or 0.24 mg flurprimidol per pot or 0.03 or 0.06 mg uniconazole per pot. In Expt. 2, size 10/12 ‘Nellie White’ easter lilies were treated with 4-fl oz drenches applied to the surface of the substrate when shoots were ≈3 inches tall providing 0.0, 0.01, 0.02, 0.04, 0.06, or 0.08 mg flurprimidol per pot. In Expt. 1, plants treated with flurprimidol or uniconazole were up to 38.9 cm (59%) shorter than untreated plants, while time to flower and flower number remained unaffected by plant growth retardant (PGR) treatments. In Expt. 2, as the amount of flurprimidol increased from 0.01 to 0.08 mg/pot, plant height was suppressed linearly (r2 = 0.63), by up to 23.2 cm (28%), while time to flower and flower number remained unaffected. Additionally, the chemical cost for drenches containing flurprimidol is less than the cost of uniconazole required to achieve comparable height control. Flurprimidol substrate drenches appear to be an effective and economical alternative to control easter lily height.

Full access

Preplant bulb soaks of ancymidol, flurprimidol, paclobutrazol, and uniconazole; foliar sprays of flurprimidol; and substrate drenches of flurprimidol, paclobutrazol, and uniconazole were compared for height control of `Prominence' tulips (Tulipa sp.). Height control was evaluated at anthesis in the greenhouse and 10 days later under postharvest conditions. Substrate drenches of ancymidol, flurprimidol, and paclobutrazol resulted in adequate control using concentrations of 0.5, 0.5, and 1 mg/pot a.i. (28,350 mg = 1 oz), respectively. At these concentrations, ancymidol drenches cost $0.06/pot and paclobutrazol drenches $0.03/pot. Since flurprimidol is not yet available and no price is available, growers will need to assess the cost compared to ancymidol and paclobutrazol. Flurprimidol foliar sprays at <80 mg·L–1 (ppm) were ineffective in controlling height during greenhouse forcing, but during postharvest evaluation 80 mg·L–1 resulted in 14% shorter plants than the untreated control. Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole at concentrations of 25, 50, and 10 mg·L–1, respectively, effectively controlled plant height. Preplant plant growth regulator soaks are a cost-effective method of controlling plant height of tulips because of the limited amount of chemical required to treat a large quantity of bulbs.

Full access