Search Results

You are looking at 41 - 50 of 57 items for

  • Author or Editor: Bielinski M. Santos x
Clear All Modify Search

In Florida, nutsedge (Cyperus spp.) is a major weed problem in mulched-vegetable production. As methyl bromide (MBr) is phased out, alternatives are essential for growers. However, because of critical use exemptions, growers will still be able to use restricted amounts of MBr. Therefore, using highly-retentive mulch, such as virtually impermeable film (VIF), can reduce fumigant loss and may allow rate reduction without compromising efficacy. Preliminary studies have shown that metalized mulches can be an alternative to VIF. However, further studies are needed to compare MBr retention properties and nutsedge control of high density polyethylene (HDPE) mulch, VIF, and metalized mulch. Two field studies were conducted in spring 2005, in Ruskin, Florida. Metalized and HDPE mulches, and VIF were combined with the following rates of MBr + chloropicrin (Pic) (67/33, w/w): 175 and 350 lb/acre. Methyl bromide retention was evaluated in soil air samples at 1, 2, 4, and 6 days after treatment (DAT). Nutsedge plants were counted at 2, 4, 7, 9, and 12 weeks after treatment (WAT). Data were examined with regression analysis to establish the relationship between the time and both MBr concentration and nutsedge densities. Concentration of MBr + Pic under either the metalized mulch or VIF was about 6 times higher than under HDPE at 5 DAT, regardless of the MBr + Pic rate. At 12 WAT, nutsedge population was <1 plant/50 ft row with metalized and VIF and 175 lb/acre of MBr + Pic, whereas about 25 plants/50 ft row were present with 350 lb/acre of the fumigant and HPDE. The weed population reached >100 plants/50 ft row with 175 lb/acre of MBr + Pic. These findings demonstrate that metalized and VIF mulches can provide effective control of nutsedge with one-half of the commercially used MBr + Pic rate.

Free access

Previous research has demonstrated stimulation of purple and yellow nutsedge (Cyperus rotundus and C. esculentus) with chloropicrin when applied at rates ranging from 100 to 150 lbs/acre (112 to 168 kg·ha–1) under low or high density polyethylene film mulch. This stimulatory effect has been exploited in research by developing a program of metam application 5 days after application of chloropicrin, thus placing metam in the soil once the tubers have begun to sprout and are most vulnerable. This project was expanded in 2004–05 to include the commercial emulsifiable concentrate formulation of 65% 1,3-dichloropropene and 35% chloropicrin (1,3-D + Pic) and virtually impermeable film mulch as well as high density polyethylene film. The test site was a commercial tomato farm in west central Florida with a heavy infestation of purple nutsedge. Chloropicrin was applied into raised beds through three gas knives, while 1,3-D + Pic and metam potassium were applied in 1 acre inch of water through 2 drip irrigation tubes spaced 10 inches apart and 5 inches from the bed center. Metam was applied 5 days after application of chloropicrin and 1,3-D + Pic. Treatments were applied under both standard high density polyethylene film (Hilex and Bromostop) VIF. Stimulation of nutsedge sprouting and emergence was about the same with either chloropicrin alone or combined with 1,3-D; however, there was some enhancement when applied under VIF. There was a slight improvement in efficacy of metam potassium when applied alone under VIF, contrary to previous results. Application of metam 5 days after application of chloropicrin or 1,3-D + Pic greatly improved nutsedge control over that observed without the subsequent application of metam and VIF improved results to some degree. Producers of drip irrigated crops in Florida can achieve acceptable to excellent nutsedge control using this sequential application technique combined with VIF; however, the addition of a second drip tube on the bed top increases expense by about $125/acre and is not compatible with crops grown with more than a single row on the bed.

Free access

Field trials were conducted in Bradenton, Fla., to determine the effect of purple and yellow nutsedge (Cyperus rotundus and C. esculentum) time of emergence on the area of influence of each weed on bell pepper (Capsicum annuum). Each weed-bell pepper complex was studied separately. A single weed was transplanted 1, 2, 3, 4, and 5 weeks after bell pepper transplanting (WAT) and bell pepper yield was collected at 0, 30, 60, and 90 cm from each weed. Bell pepper yield data indicated that yellow nutsedge was more aggressive than purple nutsedge interfering with bell pepper. When yellow nutsedge emerged 1 WAT, bell pepper yield losses were between 32 and 57% for plants at 0 and 30 cm away from the weed, respectively, which represents at least a density of approximately 3.5 plants/m2. For purple nutsedge, one weed growing since 1 WAT between two bell pepper plants (0 cm; 10 plants/m2) produced a yield reduction of 31%. These results indicated that low nutsedge densities, which are commonly believed to be unimportant, can cause significant bell pepper yield reductions.

Free access

A field study was conducted in Gurabo, P.R., to examine the potential of drip-applied herbicides for weed control in polyethylene-mulched tomato. The herbicide treatments were a) metolachlor at a rate of 1.1 kg a.i./ha; b) napropamide at 2.2 kg a.i./ha; c) pebulate at 4.5 kg a.i./ha; and d) trifluralin at 0.8 kg a.i./ha. A nontreated control was added. Each herbicide plot was split in two application methods: preemergence application and through the drip lines with 100 m3 water. In both cases, herbicides were delivered three weeks before tomato transplanting. There was no significant difference between the two delivery methods. Metolachlor showed the best control of broadleaf weeds (>80%) and highest tomato fruit yield. Applying herbicides through the drip lines is a viable alternative in mulched tomato.

Free access

Field trials were conducted to determine the effect of yellow nutsedge (Cyperus esculentus) and purple nutsedge (C. rotundus) time of establishment on their distance of influence on bell pepper (Capsicum annuum). A single seedling of each weed species was transplanted 1, 2, 3, 4, and 5 weeks after transplanting (WAT) bell pepper. Each weed was separately established in the center of plots within double rows of bell peppers. Crop height and yield were determined from bell pepper plants located at 6, 13.4, 24.7, and 36.5 inches away from each weed. Bell pepper height was unaffected by weed species, time of establishment, or the interaction between these factors. Marketable yield data indicate that yellow nutsedge was more aggressive than purple nutsedge interfering with bell pepper. When yellow nutsedge was established at 1 WAT, bell pepper yield reduction was between 57% and 32% for plants at 6 and 13.4 inches away from the weed respectively, which represents a density of ≈0.14 plant/ft2. One purple nutsedge plant growing since 1 WAT at 6 inches along the row from two bell pepper plants (0.43 plant/ft2) produced a yield reduction of 31%. These results indicate that low nutsedge densities, which are commonly believed to be unimportant, can cause significant bell pepper yield reductions.

Full access

Field trials were conducted to: 1) determine the effect of mulch types and applied concentrations of 1,3-dichloropropene + chloropicrin (1,3-D + Pic) on fumigant retention; and 2) examine the influence of mulch films and 1,3-D + Pic concentrations on purple nutsedge (Cyperus rotundus) control. 1,3-D + Pic concentrations were 0, 600, 1000, and 1400 ppm, and mulch types were white on black high-density polyethylene mulch (HDPE), white on black virtually impermeable film (VIF-WB), silver on white metalized mulch, and green VIF (VIF-G). Regardless of the initial 1,3-D + Pic concentrations and mulch types, fumigant retention exponentially decreased over time. When 1400 ppm of 1,3-D + Pic were injected into the soil, 1,3-D + Pic dissipation reached 200 ppm at 3.2, 2.9, 2.2, and 1.5 days after treatment (DAT) under VIF-G, VIF-WB, metalized, and HDPE mulches, respectively. At 5 weeks after treatment (WAT), HDPE mulch had the highest purple nutsedge densities among all films. The treatments covered with VIF-G had purple nutsedge densities <5 plants/ft2, regardless of the applied fumigant concentration, while VIF-WB and metalized mulch reached this weed density with 696 ppm of the fumigant. In contrast, 1186 ppm of 1,3-D + Pic were needed to reach this weed density with HDPE mulch. Correlation analysis showed that mulch fumigant retention readings at 3 DAT effectively predict purple nutsedge densities at 5 WAT (r ≤ –0.94). These findings proved that 1,3-D + Pic activity on purple nutsedge can be improved with the use of more retentive films, which cause longer fumigant retention, thus improving efficacy. Growers might elect reducing 1,3-D + Pic rates to compensate for the relatively higher cost of fumigant-retentive mulches, without losing herbicidal activity.

Full access

Three separate field trials were conducted to determine the most appropriate planting dates for intercropping cucumber (Cucumis sativus), summer squash (Cucurbita pepo), and muskmelon (Cucumis melo) with strawberry (Fragaria ×ananassa), and their effect on ‘Strawberry Festival’ strawberry yields. ‘Straight Eight’ cucumber, ‘Crookneck’ summer squash, and ‘Athena’ muskmelon were planted every 15 days from 25 Jan. to 23 March. None of the three intercropped species affected strawberry yield up to 60 days before the end of the season on 25 March. Cucumber yield responded quadratically to planting dates, rapidly increasing from 25 Jan. to 23 Feb. and declining afterward. Warmer temperatures favored summer squash yield, with the highest yields when planted on 23 Feb. or later. Muskmelon yields decreased as air temperatures increased, and the best planting dates were between 25 Jan. and 9 Feb. In summary, cucumber and summer squash seemed to be favored by planting under warmer temperatures, whereas muskmelon thrives under cooler weather.

Full access

A renewed interest in sulfur (S) deficiency has occurred because of reductions in atmospheric depositions of S caused by implementation of clean air regulations around the world. In vegetable production systems, other sources of S exist, such as soil S, fertilizers, and irrigation water. While soil testing and fertilizer labels impart information on quantity of S, it is unknown how much S within the irrigation water contributes to the total crop requirement. Two studies were conducted to determine the influence of elemental S fertilization rates and irrigation programs on tomato (Solanum lycopersicum) growth and yield. Irrigation volumes were 3528, 5292, and 7056 gal/acre per day and preplant S rates were 0, 25, 50, 100, 150, and 200 lb/acre. Data showed that neither plant height, leaf greenness, soil pH nor total soil S content was consistently affected by preplant S rates. During both seasons, early marketable fruit weight increased sharply when plots were treated with at least 25 lb/acre of preplant S in comparison with the nontreated control. Early fruit weight of extralarge and all marketable grades increased by 1.5 and 1.7 tons/acre, respectively, with the application of 25 lb/acre of S. There were no early fruit weight differences, regardless of marketable fruit grade, among preplant S rates from 25 to 200 lb/acre. Based upon this result, adding preplant S to the fertilization programs in sandy soils improves tomato yield and fall within the current recommended application range of S (30 lb/acre) for vegetables in Florida. At the same time, irrigation volumes did not consistently influence soil S concentration, soil pH, leaf S concentrations or tomato yield, which suggested that irrigation water with levels of S similar to this location [58 mg·L−1 of sulfate (SO4) or 19 mg·L−1 of S] may not meet tomato S requirement during a short cropping seasons of 12 weeks, possibly because microbes need longer periods of time to oxidize the current S species in the water to the absorbed SO4 form.

Full access