Search Results

You are looking at 41 - 50 of 57 items for

  • Author or Editor: Amnon Levi. x
Clear All Modify Search

Root-knot nematode-resistant rootstock lines (designated RKVL for Root-Knot Vegetable Laboratory) derived from wild watermelon (Citrullus lanatus var. citroides) were compared with wild tinda (Praecitrullus fistulosus) lines and commercial cucurbit rootstock cultivars for grafting of seedless triploid watermelon ‘Tri-X 313’ (C. lanatus var. lanatus) in a field infested with the southern root-knot nematode (RKN) (Meloidogyne incognita) in Charleston, SC, during 2009 and 2010. In both years, RKN infection was severe in ‘Emphasis’ bottle gourd, ‘Strong Tosa’ hybrid squash, and wild tinda rootstocks with galling of the root system ranging from 86% to 100%. In 2009, the RKVL wild watermelon rootstocks exhibited lower (P < 0.05) percentages of root galling (range 9% to 16%) than non-grafted ‘Tri-X 313’ (41%), ‘Emphasis’, ‘Strong Tosa’, and the wild tinda rootstocks. The grafted wild watermelon rootstock RKVL 318 produced more (P ≤ 0.05) fruit (12 per plot) than all other entries (mean = five per plot), and it produced a heavier (P ≤ 0.05) fruit yield (29.5 kg per plot) than all entries except self-grafted ‘Tri-X 313’ (21.5 kg per plot). In 2010, soil in half of the plots was treated with methyl bromide (50%):chloropicrin (50%) (392 kg·ha–1) before planting. The RKVL wild watermelon rootstocks exhibited resistance to RKN with percentages of root system galled ranging from 11% for RKVL 316 to 56% for RKVL 301 in the untreated control plots. Fruit yields in the untreated plots were 21.9, 25.6, and 19.9 kg/plot for RKVL 301, RKVL 316, and RKVL 318, respectively. Yields were greater (P ≤ 0.05) for the three RKVL rootstocks than for ‘Strong Tosa’ (3.0 kg) and ‘Ojakkyo’ wild watermelon rootstock (2.8 kg) in the untreated plots. Yields of watermelon grafted on ‘Strong Tosa’ were nearly seven times greater (P ≤ 0.05) in the methyl bromide-treated plots than in the untreated plots. In contrast, yields of RKVL 316 and RKVL 318 were similar in both treatments and the yield of RKVL 301 was less (P ≤ 0.05) in the methyl bromide-treated plots than in the untreated plots. The three RKVL wild watermelon rootstock lines exhibited resistance to RKN. RKVL 316 had low root galling and produced the heaviest fruit yield and greatest numbers of fruit of any rootstock evaluated in 2010. The RKVL lines should be useful sources of RKN resistance for rootstocks for grafted watermelon.

Free access

Bacterial fruit blotch (BFB) caused by the bacterium Acidovorax avenae subsp. citrulli (Aac) is a seed-borne disease that threatens most cucurbit crops. Although limited resistance has been found in a small number of Plant introductions (PIs) in watermelon (Citrullus spp.), there are no reports of high levels of resistance in germplasm lines of Cucumis spp. In this study, 332 Cucumis spp. PIs were screened for resistance to Aac using a newly developed seed vacuum–infusion assay. Significant differences in the reaction of the PI to BFB were observed. The majority of lines were found to be extremely susceptible to the disease. However, several PIs with lower levels of resistance were also identified. Variability in the reaction of plants within each PI was also observed. Of the 332 PI tested, 16 were selected for additional evaluation using a standard spray inoculation tests. PI 353814, PI 381171, PI 536573, and PI 614401, all belonging to C. melo, and PI 504558 (C. ficifolius) were found to have significantly greater levels of resistance than susceptible control cultivars or other PIs in two independent spray inoculation tests. Germplasm lines developed from these PIs may be useful as sources of resistance to BFB in Cucumis breeding programs.

Free access

A greenhouse trial was used to evaluate 159 accessions of bottle gourd [Lagenaria siceraria (Mol.) Standl.] obtained from the U.S. National Plant Germplasm for tolerance to clomazone herbicide. Most accessions tested were moderately or severely injured by clomazone at 3.0 mg·kg−1 incorporated into greenhouse potting medium; however, several exhibited lower injury. Seeds were produced from tolerant and susceptible plants for use in a greenhouse concentration–response experiment. About three to four times higher clomazone concentrations were required to cause moderate injury to tolerant bottle genotypes in comparison with susceptible genotypes. The differences in tolerance among genotypes were observed with injury ratings, chlorophyll measurements, and shoot weights. Clomazone may be used safely on tolerant bottle gourd genotypes, but the herbicide may not be safe for susceptible genotypes. Also, tolerant genotypes such as Grif 11942 may be desirable for use as rootstocks in grafted watermelon production.

Free access

Wide phenotypic diversity exists among American heirloom cultivars of watermelon (Citrullus lanatus var. lanatus). However, in published studies, low or no polymorphism was revealed among those heirlooms using isozyme or randomly amplified polymorphic DNA (RAPD) markers. In this study, experiments with inter-simple sequence repeat (ISSR) [also known as simple sequence repeat-(SSR-) anchored primers] and amplified fragment-length polymorphism (AFLP) markers produced high polymorphisms among watermelon heirloom cultivars. ISSR (111) and AFLP (118) markers (229 total) identified 80.2% to 97.8% genetic similarity among heirloom cultivars. The phylogenetic relations based on ISSR and AFLP markers are highly consistent with the parental records available for some of the heirloom cultivars, providing confidence in the dendogram constructed for heirlooms based on similarity values. As compared with RAPD markers, ISSRs and AFLPs are highly effective in differentiating among watermelon cultivars or elite lines with limited genetic diversity.

Free access

A genetic linkage map was constructed for watermelon using 117 recombinant inbred lines (RILs) (F2S7) descended from a cross between the high quality inbred line 97103 [Citrullus lanatus var. lanatus (Thunb.) Matsum. & Nakai] and the Fusarium wilt (races 0, 1, and 2) resistant U.S. Plant Introduction (PI) 296341 (C. lanatus var. citroides). The linkage map contains 87 randomly amplified polymorphic DNA (RAPD) markers, 13 inter simple sequence repeat (ISSR) markers, and four sequenced characterized amplified region (SCAR) markers. The map consists of 15 linkage groups. Among them are a large linkage group of 31 markers covering a mapping distance of 277.5 cM, six groups each with 4 to 12 markers covering a mapping distance of 51.7 to 172.2 cM, and eight small groups each with 2-5 markers covering a mapping distance of 7.9 to 46.4 cM. The map covers a total distance of 1027.5 cM with an average distance of 11.7 cM between two markers. The map is useful for the further development of quantitative trait loci (QTLs) affecting fruit qualities and for identification of genes conferring resistance to Fusarium wilt (races 0, 1 and 2). The present map can be used for further construction of a reference linkage map for watermelon based on an immortalized mapping population with progenies homozygous for most gene loci.

Free access

In this study, we report a simple procedure for developing and using new types of polymerase chain reaction (PCR) primers, named “high-frequency oligonucleotides–targeting active genes” (HFO-TAG). The HFO-TAG primers were constructed by first using a “practical extraction and report language” script to identify oligonucleotides (8, 9, and 10 bases) that exist in high frequency in 4700 expressed sequence tag (EST)-unigenes of watermelon (Citrullus lanatus) fruit. This computer-based screening yielded 3162 oligonucleotides that exist 32 to 335 times in the 4700 EST-unigenes. Of these, 192 HFO-TAG primers (found 51 to 269 times in the 4700 EST-unigenes) were used to amplify genomic DNA of four closely related watermelon cultivars (Allsweet, Crimson Sweet, Charleston Gray, and Dixielee). The average number of DNA fragments produced by a single HFO-TAG primer among these four watermelon cultivars was considerably higher (an average of 5.74 bands per primer) than the number of fragments produced by intersimple sequence repeat (ISSR) or randomly amplified polymorphic DNA (RAPD) primers (an average of 2.32 or 4.15 bands per primer, respectively). The HFO-TAG primers produced a higher number of polymorphic fragments (an average of 1.77 polymorphic fragments per primer) compared with the ISSR and RAPD primers (an average of 0.89 and 0.47 polymorphic fragments per primer, respectively). Amplification of genomic DNA from 12 watermelon cultivars and two U.S. Plant Introductions with the HFO-TAG primers produced a significantly higher number of fragments than RAPD primers. Also, in PCR experiments examining the ability of primers to amplify fragments from a watermelon cDNA library, the HFO-TAG primers produced considerably more fragments (an average of 6.44 fragments per primer) compared with ISSR and RAPD primers (an average of 3.59 and 2.49 fragments per primer, respectively). These results indicate that the HFO-TAG primers should be more effective than ISSR or RAPD primers in targeting active gene loci. The extensive EST database available for a large number of plant and animal species should be a useful source for developing HFO-TAG primers that can be used in genetic mapping and phylogenic studies of important crop plants and animal species.

Free access

Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses affecting watermelon [Citrullus lanatus (Thunb.) Matsun & Nakai var. lanatus] in the United States. The ZYMV-Florida strain (ZYMV-FL) is considered a major limitation to commercial watermelon production in the United States. Inheritance of resistance to ZYMV-FL is conferred by a recessive gene. This report describes the identification of single-reaction, polymerase chain reaction-based markers linked to the ZYMV-FL resistance gene in watermelon. In this study, we identified a marker ZYMV-resistant polymorphism (ZYRP) linked to the ZYMV-FL resistance gene locus (genetic distance of 8 cM) in an F2 population, and in a backcross one to the resistant parent population (BC1R) (genetic distance of 13 cM). The identification of a single nucleotide polymorphism within the ZYRP marker for the parental genotypes allowed the development of a sequence-characterized amplification region marker linked to the ZYMV-FL resistance gene. Experiments using a BC2F2 population derived from the U.S. Plant Introduction 595203 (C. lanatus var. lanatus) and the recurrent parent ‘Charleston Gray’ indicated that the ZYRP marker can be used in marker-assisted selection to identify genotypes containing the gene conferring ZYMV-FL resistance in watermelon.

Free access

Powdery mildew [Podosphaera xanthii (Castagne) Braun & Shishkoff (syn. Sphaerotheca fuliginea auct. p.p.)] is now a common disease on watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] in the United States. In this study, the entire available U.S. Plant Introduction collection of Citrullus Schrad. ex Eckl. & Zeyh. species was evaluated for resistance to P. xanthii race 1W. The collection consists of four Citrullus species and one Praecitrullus Pangalo species [C. lanatus var. citroides (L.H. Bailey) Mansf., C. colocynthis (L.) Schrad., C. rehmii De Winter, and P. fistulosus (Stocks) Pangalo]. Wild-type accessions tended to be more resistant more often than the cultivated species, C. lanatus var. lanatus. None were immune, eight of the 1573 accessions exhibited high levels of resistance, and another 86 demonstrated intermediate resistance. Stem and leaf disease severity were weakly correlated (r 2 = 0.64, P = 0.001). The majority of accessions having resistance were collected in Zimbabwe. Resistance was found in four species.

Free access