Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: Toyoki Kozai x
Clear All Modify Search

The effects of initial sucrose (suc) concentrations in the medium (S0 ) on the carbon balance and growth of sweetpotato [Ipomoea batatas (L.) Lam. `Beniazuma'] and tomato (Lycopersicon esculentum Mill. `HanaQueen') plantlets were studied under controlled environmental conditions. Plantlets were cultured with 0, 7.5, 15, or 30 g·L-1 of S0 under high photosynthetic photon flux (160 to 200 μmol·m-2·s-1) and CO2 enriched (1400 to 2050 μmol·mol-1) conditions. Net photosynthetic rate per leaf area (Pl ) decreased and dry weight per plantlet (Wd ) increased with increasing S0 , but did not differ significantly between S0 of 7.5 to 30 g·L-1 for sweetpotato or 15 to 30 g·L-1 for tomato. Carbon influxes and effluxes of the plantlets by metabolism of medium suc and/or photosynthesis, and respiration were estimated based on measurements of in situ and steady state CO2 exchange rates and sugar uptake during culture. At S0 from 7.5 to 30 g·L-1, photosynthesis was responsible for 82% to 92% and 60% to 67% of carbohydrate assimilation for sweetpotato and tomato, respectively. Estimated carbon balances of plantlets based on the estimated and actual increases of moles of carbon in plant tissue demonstrated that in situ estimation of carbon balance was reasonably accurate for sweetpotato at S0 of 0 to 15 g·L-1 and for tomato at S0 of 0 g·L-1 and that the actual contribution of photosynthesis for tomato at high S0 might be lower than the values estimated in the present experiment. Results showed that initial suc concentration affected the relative contribution of photosynthesis on their carbon balances and that the responses were species specific. The failure of validation at S0 in a range specific to each species suggested the need for further study on carbon metabolism of in vitro plantlets cultured with sugar in the medium.

Free access

The CO2 balance of a commercial closed system with artificial lighting (CSAL), in which lettuce plants (Lactuca sativa L. ‘Early Impulse’, ‘King Crown’, and ‘Cos Lettuce’) were produced every day and CO2 was added to the air by gas cylinders and workers’ respiration, was analyzed. In the experiment, 95% of the CO2 supplied from cylinders was apparently assimilated by the lettuce plants in the commercial CSAL, suggesting that the supplied CO2 was used efficiently. The amounts of CO2 assimilated by the lettuce plants and loss resulting from leakage, respectively, accounted for 78% and 22% of the total amount of CO2 supplied. The amounts of CO2 supplied by the cylinders and by the workers’ respiration, respectively, accounted for 83% and 17% of the total amount of CO2 supplied. Based on the analysis, a relatively high CO2 utilization efficiency of 78% was observed in the experiment despite the operation rate of 33%, which is defined as the percentage of the culture beds with plants. If the operation rate could be increased to 100%, the CO2 utilization efficiency would reach 92%. These results showed that CO2 supplied by the workers’ respiration helped to reduce the amount of CO2 supplied by the cylinders and hence the CO2 cost in a commercial CSAL.

Free access