Search Results
You are looking at 31 - 40 of 43 items for
- Author or Editor: Steven A. Sargent x
A study was conducted to determine the influence of the ethylene action inhibitor, 1-methylcyclopropene (1-MCP), on the shelf life and deterioration during storage at 5 °C of intact netted muskmelon (Cucumis melo L. var. reticulatus) fruit and fresh-cut cubes prepared from those fruit. ‘Durango’, ‘Magellan’, and ‘7920’ fruit (3/4 to full-slip stage) were treated with 1-MCP (1.0 μL·L−1) for 24 h at 20 °C. Preliminary research with ‘Athena’ muskmelon had shown that the more physiologically advanced distal pericarp tissue developed significantly more watersoaking than the less advanced proximal and center portions during 5 °C storage; therefore, after treatment with 1-MCP and cooling to 5 °C, the center portions of the fruit were used to prepare the fresh-cut samples. Fresh-cut cubes and intact fruit were stored for 12 d at 5 °C. Intact fruit of all tested cultivars responded to 1-MCP application with improved firmness retention during storage, but no watersoaking was observed in intact fruit. The effect of 1-MCP treatment on the firmness retention and watersoaking of fresh-cut cubes from the different cultivars was inconsistent. Exposure of muskmelon fruit to 1-MCP did not significantly influence the flesh color or soluble solid contents of either intact fruit or fresh-cut cubes during storage at 5 °C.
The profitability of the fresh market blueberry industry in many areas is constrained by the extensive use and cost of soil amendments, high labor requirements for hand harvesting, and the inefficiencies of mechanical harvesters. Vaccinium arboreum Marsh is a wild species that has wide soil adaptation and monopodial growth habit. It has the potential to be used as a blueberry rootstock, expanding blueberry production to marginal soil and improving the mechanical harvesting efficiency of cultivated blueberry. The objectives of this research were to compare yield, berry quality, and postharvest fruit storage of own-rooted vs. grafted southern highbush blueberry (SHB) cultivars (Farthing and Meadowlark) grown on amended vs. nonamended soil and either hand or mechanical harvested. Yields of hand-harvested SHB during the first two fruiting years were generally greater in own-rooted plants grown on amended soil compared with own-rooted plants on nonamended soil or grafted plants on either soil treatment. However, by the second fruiting year, hand-harvest yields of grafted SHB were ≈80% greater than own-rooted plants when grown in nonamended soil. Yields of mechanical-harvested SHB grafted on V. arboreum and grown in either soil treatment were similar to yields of mechanical-harvested own-rooted plants in amended soil the second fruiting year, and greater than yields of own-rooted plants in non-amended soil. In general, mechanical harvesting reduced marketable yield ≈40% compared with hand harvesting. However, grafted plants reduced ground losses during harvest by ≈35% compared with own-rooted plants for both cultivars. Mechanical-harvested berries had a greater total soluble solids:total titratable acidity ratio (TSS:TTA) than hand-harvested berries, and berries harvested toward the end of the harvest season had a greater TSS:TTA than those from early-season harvests. As postharvest storage time increased, berry appearance ratings decreased and berry softness and shriveling increased, particularly in mechanical-harvested compared with hand-harvested berries. Firmness of mechanical-harvested berries decreased during storage, whereas firmness of hand-harvested berries remained relatively stable. However, fruit quality at harvest and during postharvest storage was unaffected by V. arboreum rootstocks or lack of pine bark amendment. This study suggests that using V. arboreum as a rootstock in an alternative blueberry production system has the potential to decrease the use of soil amendments and increase mechanical harvesting efficiency.
Lettuce (Lactuca sativa L.) is grown worldwide, from temperate to subtropical climates. Spring season production in humid, subtropical regions, such as southern Florida, is characterized by rising ambient temperatures that can stress lettuce to prematurely bolt and lose shelf life. The objectives of this research were 1) to identify genetic variability in heat tolerance and shelf life among lettuce types and accessions grown under humid, subtropical conditions, and 2) to understand the genotype × environment (G × E) interaction to estimate shelf life of these lettuce accessions. Five lettuce types (romaine, crisphead, butterhead, leaf, and Latin) were grown under commercial conditions in the Everglades Agricultural Area near Belle Glade, FL, USA, for five field experiments over two seasons. Lettuce heads were evaluated at harvest, and subsets were transported to a local commercial grower/shipper for vacuum-cooling and storage at 15 °C according to previously determined protocols for accelerated shelf life testing. Visual appearance ratings were made across harvests and storage time points to segregate lettuce accessions with an estimated marketable shelf life >14 days. The breeding lines tested in this research had head weight and marketability comparable to commercial cultivars. Notably, the crisphead accessions 50113, 60157, 60159, and H1098 had the highest estimated and actual shelf life of more than 21 days, with no presence of bolting or tipburn. Meanwhile, romaine, butterhead, leaf, and Latin types had accessions with estimated and actual shelf life ranging from 14 to 28 days and no presence of bolting or tipburn. A G × E analysis indicated that this interaction is significant; therefore, breeders should consider analyzing G × E when developing new cultivars with good horticultural characteristics, longer shelf life, and most importantly, adaptation to warmer humid, subtropical conditions.
The effect of physiological maturity at harvest on ripe tomato (Lycopersicon esculentum Mill.) volatile profiles was studied using ripening response time (in days) to 100 μL·L-1 exogenous ethylene treatment as a tool to separate immature-green from mature-green fruit. Electronic nose (EN) sensor array and gas chromatography (GC) analyses were used to document volatile profile changes in tomatoes that required a 1-, 3-, or 5-day ethylene treatment to reach the breaker stage. EN output analysis using multivariate discriminant and canonical analyses classified intact tomato and whole tomato homogenate samples that required 3 or 5 days of ethylene treatment as significantly different (P < 0.01) from those that required only 1 day. The GC aroma profiles from whole tomato homogenate showed that 1-day fruit had significantly higher levels (P < 0.05) of 1-penten-3-one, cis-3-hexenal, 6-methyl-5-hepten-2-one, 2-isobutylthiazole, and geranylacetone when compared to 5-day fruit. Analysis of excised tomato tissues showed that pericarp (including columnella) produced an average 219% greater concentration of the 16 aroma volatiles quantified by GC when compared to locular gel (442 and 203 μL·L-1, respectively). EN analysis concurred with GC by showing greater average Mahalanobis distance between pericarp tissue groupings when compared to locular gel groupings (78.25 and 12.33 units, respectively). Pericarp tissue from the 5-day ethylene treatment showed significantly lower levels of 1-penten-3-one, trans-2-heptenal, 6-methyl-5-hepten-2-one, 2-isobutylthiazole, geranylacetone, and β-ionone compared to the 1- and 3-day treatments, Similarly, locular gel from the 3- and 5-day ethylene treatments had significantly lower levels of 1-penten-3-one, 2-isobutylthiazole, and 1-nitro-2-phenylethane compared to 1-day samples. cis-3-Hexenol in locular gel was the only volatile compound that showed significantly higher levels with increasing ethylene treatment. EN analysis showed greater Mahalanobis distances between 1- and 3-day ethylene samples than between 3- and 5-day ethylene samples (32.09 and 12.90, 24.14 and 6.52, 116.31 and 65.04, and 15.74 and 13.28 units, for intact tomato, whole tomato, pericarp, and locular gel homogenate, respectively).
The ethylene inhibitor 1-methylcyclopropene (1-MCP) delays ripening of avocado (Persea americana) and many other fruits, but there are few reports of the influence of this ethylene inhibitor on sensory attributes. The objective of this study was to evaluate the effects of aqueous 1-MCP on fruit ripening and sensory attributes of ‘Beta’ avocado, a Guatemalan-West Indian hybrid. Treatment with aqueous 1-MCP at 2.77 μmol·L−1 (150 μg·L−1) for 1 minute effectively delayed ripening by 6 days, delaying the onset of climacteric and lowering respiration rates as compared with control. Treated fruit had greener peel and firmer pulp when ripe, and untrained sensory panelists could not detect differences in texture, flavor, and overall liking between treated and untreated fruit. Immersion of ‘Beta’ avocado in aqueous 1-MCP extended the shelf life to 14 days at 20 °C and 84% relative humidity, an increase of 6 days (75%) as compared with untreated fruit, without compromising sensory acceptability. This technology has the potential to permit shipment of these fruit to more distant markets than currently possible.
The postharvest life of lettuce (Lactuca sativa) is variable and negatively affected by mechanical injury, incomplete cooling, and poor genetic quality. Lettuce breeders are developing cultivars with a longer shelf life and rely on subjective, destructive, and time-consuming methods for quality analysis. One method of accelerating quality evaluations is known as accelerated shelf-life testing (ASLT), which has the potential to assist breeders in assessing lettuce quality and shelf life. The objective of this research was to determine the quality traits that significantly affect shelf life to develop an ASLT procedure to rapidly assess the postharvest quality of lettuce accessions in breeding programs. In Test 1, Romaine lettuce quality was evaluated using one subjective and five objective parameters during storage at 5, 10, 15, or 20 °C. Results determined that weight loss, lightness*, and hue* angle were best correlated with the overall appearance rating, whereas storage at 10 or 15 °C differentiated the shelf-life potential quickly and without excessive deterioration. In Test 2, these objective characteristics and storage temperatures were used to study rates of quality deterioration of a commercial Romaine cultivar (Okeechobee) and a breeding line (60182), both with long shelf lives, and a Batavia lettuce cultivar (La Brillante) with a short shelf life. Lettuce was evaluated during storage at 10 °C (winter and spring seasons) or at 15 °C (winter season). Weight loss was the most appropriate quality index for lettuce at these storage temperatures for a single harvest, whereas lightness* and hue* angle were the most appropriate indices for comparing quality between harvests. To apply ASLT to postharvest assessments of lettuce, breeders and other researchers should include two controls with good and poor shelf life (similar to ‘Okeechobee’ and ‘La Brillante’, respectively) as standard baseline cultivars during storage at either 10 or 15 °C.
This study investigated the effect of ethylene treatment at high temperatures of 30 to 40 °C for up to 72 hours on subsequent ripening-associated processes in mature green ‘Sunny’ and ‘Agriset 761’ tomatoes (Solanum lycopersicum). Compared with ethylene-treated fruit at 20 °C, ethylene exposure at 30 or 35 °C stimulated ripening in terms of ethylene biosynthesis and color development, but the ethylene effect was only apparent after transfer to air at 20 °C. There were no negative effects on ripe tomato quality related to ethylene exposure at 30 or 35 °C. However, ethylene production of tomatoes was permanently impaired by ethylene exposure at 40 °C for 48 or 72 hours even after transferring fruit to air at 20 °C; these fruit exhibited slow softening and color development. Our results suggest that tomatoes perceive ethylene at 30 to 35 °C despite impairment of ripening at those temperatures, with the accelerated ripening response becoming apparent only after transferring the tomatoes to air at lower temperature.
Grapefruit are well-adapted to arid and warm climatic conditions, but well-irrigated trees usually produce better-quality fruits. Because water is a major component of the fruits, there is a strong relationship between drought stress and fruits quality traits such as fruits size, external fruits color, and juice quality. The object of this study was to develop a computer model to predict postharvest external grapefruit color as a function of drought stress. During model development, drought stress was quantified using a concise water balance model based on crop evapotranspiration, precipitation, and irrigation. Data collected from Murcia, Spain, during the 2007 and 2008 growing seasons were used for model development, and the model was optimized by comparing model predictions and observations for each growing season. The root mean square error and Nash and Sutcliffe coefficient of efficiency (NSE) were used to evaluate model performance. Then, the model was evaluated with independent data collected from Florida during the 2005–06 growing season. A second-order polynomial relationship was found between external fruits color and drought stress, with less drought stress resulting in better external fruits color. Model optimization revealed good model performance for predicting external fruits color in Murcia, with NSE values of 0.975 and 0.979 for the 2007 and 2008 growing seasons, respectively. Model evaluation with the data from Florida showed that model predictions were reliable, with a NSE value of 0.984. A robust model to predict external grapefruit color as affected by drought stress was developed during the present study and could be potentially applied to supply information for suitable irrigation management of various grapefruit cultivars grown under different climatic conditions. Model performance could be confirmed by future research with data collection during further multiple seasons for different cultivars and a range of climatic conditions.
Greenhouse-grown bell pepper (Capsicum annuum L. `Robusta') were harvested at five stages of maturation (10% red to full red) in early winter 2002 (Expt. 1) and at two stages (10% red and full red) in early Spring 2002 (Expt. 2). The fruit were subsequently stored at 20 °C in a continuous-flow chamber consisting of either 100 μL·L–1 ethylene (balance air) or air-only (control) at 90% relative humidity (RH). Individual fruit were removed from the chambers upon reaching full red color, and stored at –30 °C until physicochemical analyses were conducted. Harvest maturity, and ethylene exposure had no appreciable effect on pulp soluble solids content, total titratable acidity or pH. Exposure to ethylene hastened ripening time compared to the air control but was independent of fruit maturity at harvest. Fruit exposed to ethylene reached full-red color 6.4 days (Expt. 1) and 4 days (Expt. 2) earlier than air-only fruit, respectively. There were no significant phytochemical and antioxidant differences noted for total carotenoids, total ascorbic acid, and soluble phenolics at various maturity stages due to ethylene exposure. Appreciable differences were observed between the two experiments for phytochemicals and antioxidants, as bell peppers from the latter experiment contained at least twice the concentrations of phytochemicals and antioxidant capacity as those from the first experiment. Differences in these parameters between experiments were attributed to environmental factors such as average temperature, day length, and light intensity. Ethylene was demonstrated to be an effective postharvest treatment for accelerating color change in this bell pepper cultivar, permitting earlier harvest without altering phytochemical synthesis rates.
Florida peaches (Prunus persica) typically are picked and placed in a cold room on the day of harvest, then packed and shipped the next day. This room cooling (RC) is slow, requiring ≈24 hours or more for the fruit to reach optimal temperature (6 to 7 °C). There is currently limited research on the effect of cooling practices on microbial quality of peaches, yet this study is essential for decision making in areas such as upgrading packing house facilities and the implementation of improved handling procedures. This research compared the efficacies of postharvest cooling by RC, forced-air cooling (FAC), and hydrocooling with sanitizer (HS) treatment of peaches to reduce their surface microbial population and to determine the effect on shelf life and microbial quality. Three trials for RC and two trials each for FAC and HS were performed. Following cooling, fruit were stored at 1 °C. The average aerobic plate count (APC) from field samples was 5.29 log cfu/peach, which remained unchanged after RC or FAC but was reduced significantly (P < 0.05) to 4.63 log cfu/peach after HS. The average yeast and mold counts (Y&M) from field samples (6.21 log cfu/peach) were reduced highly significantly (P < 0.001) to 4.05 log cfu/peach after HS. Hydrocooling significantly (P < 0.05) reduced the APC and Y&M counts from the peaches and showed promise in maintaining the microbiological quality of the fruit throughout storage. However, at the end of the 21-day storage period, there was no significant difference in APC or Y&M counts from peaches, irrespective of the cooling methods. Peaches that went through the hydrocooling process and were subsequently packed showed an increase (P < 0.05) in both APC and Y&M counts, while fruit that were not hydrocooled showed no such increase. Information obtained will be used to recommend the best temperature management practices for maintaining the postharvest quality of peaches. A detailed cost-benefit analysis of different cooling methods and the time interval between harvest and shipment are both necessary for a more conclusive recommendation.