Search Results
You are looking at 31 - 40 of 43 items for
- Author or Editor: Ryan N. Contreras x
Japanese-cedar [Cryptomeria japonica (L.f.) D. Don] represents an alternative to leyland cypress [×Cuprocyparis leylandii (A.B. Jacks. & Dallim.) Farjon] as an evergreen screen or specimen plant for landscapes. It performs well under a range of soil and environmental conditions but has been underused attributable, in part, to unsightly winter browning caused by photoinhibition. In previous studies, chance seedlings that did not exhibit winter browning were identified as tetraploids. The current study was conducted to induce polyploidy in japanese-cedar. Approximately 600 seedlings were sprayed with 150 μM oryzalin + 0.1% SilEnergy™ for 30 consecutive days under laboratory conditions. Two hundred thirty-seven seedlings with thickened and twisted leaves were selected, transplanted, and grown in a glasshouse for 120 days. Seedling ploidy levels were analyzed using flow cytometry 180 days after treatment (DAT), identifying 197 (83.1%) tetraploids, 22 (9.3%) cytochimeras, and 18 (7.6%) diploids. Morphology of induced tetraploids was similar to that previously described and provided a phenotypic marker during selection that was over 92% accurate. A random subset of 20 tetraploid individuals was analyzed 270 DAT and were found to contain only tetraploid cells in the leaves analyzed, confirming stability over this period. This study demonstrated the use of oryzalin for inducing tetraploids in japanese-cedar, which we predict will be effective in other gymnosperms.
Chromosome numbers are an important botanical character for multiple fields of plant sciences, from plant breeding and genetics to systematics and taxonomy. Accurate chromosome counts in root tips of woody plants are often limited by their small, friable roots with numerous, small chromosomes. Current hydrolysis and enzyme digestion techniques require handling of roots before the root squash. However, optimum chromosome spread occurs when the cell walls have degraded past the point of easy handling. Here, we present a new enzyme digestion protocol that is fast, efficient, and flexible. This protocol reduces handling of the roots allowing for long-duration enzyme digestion. Digestions are performed on a microscope slide, eliminating the need for handling digested cells with forceps or pipettes. To illustrate the flexibility of this method across woody plant taxa, we performed chromosome counts on five angiosperms and one gymnosperm. Ploidy levels included diploids, triploids, and tetraploids with chromosome numbers ranging from 2n = 16 to 2n = 80. The range of holoploid 2C genome sizes spanned 1.54–24.71 pg. This protocol will provide a useful technique for plant cytologists working with taxa that exhibit a wide range of genome size and ploidy levels.
Common lilac is an important flowering shrub that accounts for ≈$20 million of sales in the U.S. nursery industry. Cultivar improvement in common lilac has been ongoing for centuries, yet little research has focused on shortening the multiple-year juvenility period for lilacs and the subsequent time required between breeding cycles. The practice of direct-sowing of immature “green” seed has been shown to reduce juvenility in some woody plants, but it has not been reported for common lilac. This study investigated the effects of seed maturity [weeks after pollination (WAP)], pregermination seed treatment (direct-sown vs. cold-stratified), and postgermination seedling chilling on the germination percentage, subsequent plant growth, and time to flower on lilac seedlings. All seedlings were derived from the female parent ‘Ludwig Spaeth’ and the male parent ‘Angel White’. Seeds harvested at 15 and 20 WAP resulted in 58% (sd ± 9.9%) and 80% (sd ± 9.0%) germination, respectively, which were similar to that of dry seed collected at 20 WAP with stratification (62% ± 4.2%). Seedlings from the green seed collected at 15 and 20 WAP were also approximately three-times taller than those of dry seed groups DS1, DS2, and DS3 after the first growing season. Over the next two growing seasons, there were no differences in seedling height across all treatments. Flowering occurred at the beginning of the fourth season and without differences among treatments. These results indicate that the collection and direct sowing of immature, green seed can be used to successfully grow lilac seedlings, but that they do not reduce the juvenility period. However, this method can provide more vegetative growth in year one to observe early vegetative traits such as leaf color, and it can provide more material for DNA extraction to support molecular research.
New technologies such as online databases, interactive dichotomous keys, and online courses have changed the way some plant identification courses are delivered. These changing resources may create discrepancies between traditional instruction of landscape plant materials courses and the way modern students learn, which may result in students not meeting their potential. However, what resources students are using to study plant materials is unclear. We investigated the relationship between learning styles, study habits, and performance of students during two terms of woody landscape plant materials courses. To assess these relationships, we determined the characteristics of the participants and their preferred study method throughout the duration of the term as well as correlations between 1) preferred learning styles and performance, 2) preferred learning styles and preferred study method, and 3) performance and preferred study method. The participants in this study (n = 31) consisted of 14 males and 17 females. Of the 31 participants, 3 were freshmen, 3 were sophomores, 16 were juniors, 7 were seniors, and 2 were graduate students. Based on preference scores for learning style, 15 students were identified as visual learners, 3 as auditory, and 13 as kinesthetic learners. No significant relationships were observed between preferred learning style and performance or between preferred learning style and preferred study method. The two preferred study methods were using branch samples collected by the instructor and notecards created by students. No relationship existed between preferred study method and performance in the course. Our study provides information on study methods of woody plant identification students enrolled in a site-based course. We did not observe statistically significant relationships among preferred learning style, preferred study method, and course grade, but anecdotal evidence indicated students who prepared their own study aids by making notecards scored better in these courses.
Conventional wisdom regarding potato breeding indicates that a strong triploid block prevents the development of viable triploid seeds from crosses between tetraploid and diploid clones. However, in a recent set of crosses between elite tetraploid potatoes and an improved diploid hybrid population derived from group Stenotomum and group Phureja, 61.5% of the resulting clones were found to be triploid. If clones derived from one diploid parent suspected of producing a high frequency of unreduced gametes were excluded, then the frequency of triploid clones increased to 74.4%. Tubers of these triploids are generally intermediates of the two parental groups. Our findings indicate the possibility of using triploid potatoes in potato variety development programs and in genetic and genomic studies.
Morphological analysis historically has been used to determine parentage of unknown hybrids. This can be difficult when potential parents have similar appearance, as in the case of three azaleodendron cultivars, Rhododendron L. ‘Fragrans’, ‘Fragrans Affinity’, and ‘Fragrant Affinity’. These cultivars are similar in name and appearance, and all are purported hybrids of R. catawbiense Michx. or R. ponticum L. and R. viscosum (L.) Torr. Amplified fragment length polymorphism (AFLP) analysis was conducted to determine whether the cultivars are synonyms or distinct clones and to elucidate the parental species. The three cultivars, suspected to be hybrids between taxa in subgenera Hymenanthes (Blume) K.Koch (evergreen rhododendrons) and Pentanthera (G.Don) Pojarkova (deciduous azaleas), and related taxa from each subgenus were evaluated using 31 AFLP primer combinations. Genetic similarity, calculated using Jaccard's coefficient, among the hybrids ranged from 53% to 71%, indicating that they are distinct cultivars and not a single clone. Genetic similarity was highest between the hybrids and R. ponticum among the evergreen rhododendrons, and R. viscosum among the deciduous azaleas. A dendrogram generated using the genetic similarity matrix grouped taxa into their respective subgenera, with the three cultivars nested intermediately between subgenera but more closely with subgenus Hymenanthes and particularly R. ponticum, suggesting it is the evergreen rhododendron parent. Furthermore, principle components grouped R. ponticum more closely with the hybrids and there were 18 AFLP fragments unique to R. ponticum and the hybrids. However, no unique AFLP bands were shared exclusively among the hybrids and the purported deciduous azalea parent, R. viscosum, suggesting that the original azalea parents may have been hybrids.
Because cultivation of exotic woody ornamental plants has led to establishment of a number of invasive species, there is considerable interest in breeding methods to reduce the propensity for spread. We review progress in conventional breeding and transgenic biotechnology approaches to producing sterile forms of ornamental woody plants. Conventional forms of inducing sterility, including induction of polyploidy, interspecific hybridization, and mutagenesis, are generally inexpensive and can be applied to a diversity of species at low to moderate cost. They have also been shown to be capable of producing commercially successful cultivars. In contrast, despite a variety of highly promising and rapidly developing approaches using transgenic methods, the inability to efficiently regenerate and genetically transform most ornamental species makes application of these innovations highly problematic. Moreover, because of the fragmented pattern of ornamental nursery ownership, the numerous species and varieties used, and the high regulatory cost for permits to sell most types of transgenic varieties (even when their environmental risk of spread has been reduced by sterility), application of transgenic methods is largely infeasible. A combination of fundamental regulatory reform and expanded biological research on generalized transformation and sterility methods is needed to overcome these barriers.
Japanese-cedar has been underused in landscapes of the United States until recent years. There are now over 100 cultivars, many of which are grown in the southeast of the United States. Performance of cultivars has been described from U.S. Department of Agriculture (USDA) Zone 6b to USDA Zone 7b; however, there are no reports on how cultivars perform in USDA Zone 8. The current study was conducted to measure chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content and assign visual color ratings to determine if there was a relationship between pigment values and perceived greenness, which generally is regarded as a desirable and potentially heritable trait. Total chlorophyll (P = 0.0051), carotenoids (P = 0.0266), and the ratio of total chlorophyll to carotenoids (P = 0.0188) exhibited a positive relationship with greenness after accounting for season and tree effects. In contrast, the ratio of chlorophyll a to chlorophyll b did not have an effect on greenness. There was a linear relationship between total chlorophyll and carotenoid regardless of season (summer R 2 = 0.94; winter R 2 = 0.88) when pooled across 2 years. The observed correlation between chlorophyll and carotenoid content suggests they could be used interchangeably as predictors of greenness. There were large differences in rainfall between the 2 years that may have resulted in additional variation. Furthermore, the climate in which the evaluation was conducted differs greatly from the native distribution of japanese-cedar occurring in China and Japan.
Cotoneaster Medik. is a genus of ornamental landscape plants commonly affected by fire blight. Fire blight is a disease caused by the bacterial pathogen, Erwinia amylovora (Burrill) Winslow et al., that attacks a wide range of taxa in the apple subfamily (Maloideae; Rosaceae). To assess susceptibility of species and identify potential sources of resistance, we inoculated 52 taxa of Cotoneaster with E. amylovora. Disease severity was scored by percent shoot necrosis (lesion length/total shoot length). Disease screenings were conducted over 2 years and varying levels of susceptibility were observed. Some taxa were highly susceptible to fire blight and the disease resulted in whole plant mortality (C. rhytidophyllus Rehder & E.H. Wilson, C. rugosus E. Pritzel ex Diels, and C. wardii W.W. Smith). Other taxa repeatedly exhibited moderate to high levels of disease resistance [C. arbusculus G. Klotz, C. chungtinensis (T.T. Yu) J. Fryer & B. Hylmö, C. delsianus E. Pritzel var. delsianus, C. sikangensis Flinck & B. Hylmö, C. simonsii Baker, and C. splendens Flinck & Hylmö]. Ongoing studies are being conducted to determine if taxa with high levels of resistance under artificial inoculation will exhibit high levels of resistance in the field under natural disease pressure. Identifying sources of disease resistance will be useful for breeding programs to increase tolerance of these landscape plants with desirable horticultural characteristics to fire blight.
A primary goal of undergraduate education is to provide a comprehensive and diverse educational experience to prepare and promote student success in their professional and personal pursuits. Increased academic success and program connectivity have been demonstrated when undergraduate students are engaged in research early in their degree programs. Despite the known benefits of undergraduates engaging in research, there are challenges associated with conducting undergraduate research programs. Reported barriers include the lack of student knowledge about research methods, lack of preparedness, and lack of student identification and understanding of their specific interests which may not facilitate research ideas and affinity to conduct research. Additional challenges are related to the lack of faculty resources (e.g., time, specific equipment, research space, etc.), the ability to train and supervise undergraduates who may have very limited or no research experience and those students who are true beginners lacking foundational skills. Moreover, involving, engaging, and supporting underrepresented students (e.g., first-generation college students, females, ethnic minorities) in undergraduate research experiences can require different approaches for mentors to be effective. The “Engaging Undergraduate Students in Research” workshop was organized by the Vice Presidents of the American Society for Horticultural Science (ASHS) Research and Education Divisions at the ASHS 2022 Annual Conference in Chicago, IL, USA. The workshop featured three speakers who described their experiences engaging undergraduate students in research. After each speaker provided comments for ≈5 minutes, the workshop attendees self-selected into three breakout groups with the speakers for roundtable discussions related to engaging students in research through coursework, engaging students via formal research projects, and engaging underrepresented students in research. After the breakout group discussions, a summary was given by each group, and whole group discussions and comments were facilitated. This is a summary of the information discussed and shared during the workshop, along with information that can assist faculty with developing and implementing undergraduate research experiences.