Search Results

You are looking at 31 - 40 of 48 items for

  • Author or Editor: Robert D. Wright x
Clear All Modify Search

This work was conducted to evaluate the effect of limestone additions to pine tree substrate (PTS) and PTS amended with peatmoss on pH and plant growth. ‘Inca Gold’ marigold (Tagetes erecta L.) and ‘Rocky Mountain White’ geranium (Pelargonium ×hortorum L.H. Bailey) were grown in three PTSs—100% PTS, PTS plus 25% peatmoss (v/v), and PTS plus 50% peatmoss (v/v)—made from freshly harvested loblolly pine trees (Pinus taeda L.) chipped and hammermilled through a 4.76-mm screen and a peatmoss/perlite (4:1 v/v; PL) control. Each substrate was amended with various rates of dolomitic limestone and used to grow marigolds in 10-cm square (l-L) plastic containers and geraniums in round 15-cm (1.25-L) plastic containers in a glasshouse. Regardless of limestone rate, pH was highest in 100% PTS and decreased with peat additions with PL having the lowest pH. As percent peat increased from 25% to 50%, more limestone was required to adjust pH to a particular level showing that PTS is more weakly buffered against pH change than peatmoss. Adding limestone did not increase the growth of marigold in 100% PTS, but additions of limestone did increase growth of marigold when grown in PTS containing peatmoss or in PL. Geranium growth was higher in PTS containing peatmoss (25% or 50%) and PL than in 100% PTS at all limestone rates. This research demonstrates that PTS produced from freshly harvested pine trees has an inherently higher pH than PL, and the additions of peatmoss to PTS require pH adjustment of the substrate for optimal plant growth.

Free access

The use of freshly harvested and processed pine trees as a container substrate for greenhouse and nursery crop production is a relatively new concept, and fundamental knowledge of the construction of a pine tree substrate (PTS) for optimal physical properties is insufficient. Therefore, this research was conducted to determine the influence of mixing PTSs produced with different wood particle sizes and adding other amendments to PTS on substrate physical properties and plant growth compared with traditional substrates. Coarse pine wood chips produced from 15-year-old loblolly pine trees (Pinus taeda L.) were ground in a hammermill fitted with either a 4.76-mm screen or with no screen (PTS-NS) allowing a fine and a coarse particle PTS to be produced. Increasing proportions of the finer (4.76-mm) PTS to the coarser PTS (PTS-NS) resulted in increased container capacity (CC) and shoot growth of ‘Inca Gold’ marigold (Tagetes erecta L.). In another study, PTSs were manufactured in a hammermill fitted with different screen sizes: 4.76, 6.35, 9.54, or 15.8 mm as well as PTS-NS. After being hammermilled, each of the five PTSs was then amended (by mixing) with 10% sand (PTS-S), 25% peatmoss (PTS-PM), or left unamended. Pine tree substrates were also produced by adding 25% aged pine bark (PB) to pine wood chips before being ground in a hammermill with each of the five screen sizes mentioned (PTS-HPB). These five substrates were used unamended as well as amended with 10% sand after grinding (PTS-HPBS). Control treatments included peat-lite (PL) and 100% aged PB for a total of 27 substrates evaluated in this study. Container capacity and marigold growth increased as screen size decreased and with the additions of peatmoss (PTS-PM) or hammering with PB (PTS-HPB) to PTS. Container capacity for all substrates amended with peatmoss or PB was within the recommended range of 45% to 65% for container substrates, but only with the more finely ground PTS-4.76-mm resulted in marigold growth comparable to PL and PB. However, when the PTS-NS was amended by mixing in 25% peat or hammering with 25% PB, growth of marigold was equal to plants grown in PL or PB. In a third study, hammering PTS-NS with 25% PB followed by the addition of 10% sand increased dry weight of both azalea (Rhododendron ×hybrida ‘Girard Pleasant White’) and spirea (Spiraea nipponica Maxim. ‘Snowmound’) resulting in growth equal to plants grown in 100% PB. This work shows that amending coarsely ground PTS with finer particle PTS or with other materials (peatmoss, aged PB, or sand) can result in a substrate with comparable physical properties such as CC and plant growth compared with 100% PL or PB.

Free access

The objective of this study was to determine the effects of lime and micronutrient amendments on growth of seedlings of nine container-grown landscape tree species in two pine bark substrates with different pHs. Acer palmatum Thunb. (Japanese maple), Acer saccharum Marsh. (sugar maple), Cercis canadensis L. (redbud), Cornus florida L. (flowering dogwood), Cornus kousa Hance. (kousa dogwood), Koelreuteria paniculata Laxm. (golden-rain tree), Magnolia ×soulangiana Soul.-Bod. `Lennei' (magnolia), Nyssa sylvatica Marsh. (blackgum), and Quercus palustris Müenchh. (pin oak) were grown from seed in two pine bark substrates with different pHs (pH 4.7 and 5.1) (Expt. 1). Preplant amendment treatments for each of two pine (Pinus taeda L.) bark sources were: with and without dolomitic limestone (3.6 kg·m–3) and with and without micronutrients (0.9 kg·m–3), and with and without micronutrients (0.9 kg·m–3), supplied as Micromax. Seedlings were harvested 12 and 19 weeks after seeds were planted, and shoot dry weight and tree height were determined. The same experiment was repeated using two of the nine species from Expt. 1 and pine bark substrates at pH 5.1 and 5.8 (Expt. 2). Seedling shoot dry weight and height were measured 11 weeks after planting. For both experiments, pine bark solutions were extracted using the pour-through method and analyzed for Ca, Mg, Fe, Mn, Cu, and Zn. Growth of all species in both experiments was greater in micronutrient-amended than in lime-amended bark. In general, adding micronutrients increased nutrient concentrations in the pine bark solution, while adding lime decreased them. Effect of bark type on growth in Expt. 1 was variable; however, in Expt. 2, growth was greater in the low pH bark than in the high pH bark. In general, nutrient concentrations in bark solutions were higher in low pH bark than in high pH bark for both experiments. Under the pH conditions of this experiment, micronutrient additions stimulated growth whereas a lime amendment did not.

Free access

The objective of this study was to determine the effect of micronutrient fertilization on seedling growth in pine bark with pH ranging from 4.0 to 5.5. Koelreuteria paniculata (Laxm.) was container-grown from seed in pine bark amended (preplant) with 0, 1.2, 2.4, or 3.6 kg/m3 dolomitic limestone and 0 or 0.9 kg/m3 sulfate-based micronutrient fertilizer (Micromax ®). Initial pine bark pH for each lime rate was 4.0, 4.5, 5.0, and 5.5, respectively. Final pH (week 10) ranged from 4.7 to 6.4. Ca and Mg supply in irrigation water was 10.2 and 4.2 mg·L–1. Seedlings were harvested 10 weeks after planting, and shoot dry weight and height were determined. Pine bark solution was extracted using the pour-through method at 3, 7, and 10 weeks after planting. Solution pH was measured, and solutions were analyzed for Ca, Mg, Fe, Mn, Cu, and Zn. Shoot dry weight and height were higher in micronutrient-amended bark than in bark without added micronutrients. Lime (1.2 kg· m 3 ) increased growth only in the absence of micronutrient additions. In general, adding micronutrients increased pine bark solution Ca, Mg, and micronutrient concentrations. Adding lime increased pine bark solution pH and Mg concentration and either had no effect on or decreased solution Ca and micronutrient concentrations. Regardless of pine bark pH, micronutrient additions resulted in improved growth and adding lime was not necessary.

Free access

Posttransplant root growth is critical for landscape plant establishment. The Horhizotron provides a way to easily measure root growth in a wide range of rhizosphere conditions. Mountain laurel (Kalmia latifolia L.) plants were removed from their containers and planted in Horhizotrons in a greenhouse in Auburn, Ala., and outdoors in Blacksburg, Va. Each Horhizotron contained four glass quadrants extending away from the root ball, and each quadrant within a Horhizotron was filled with a different substrate (treatment): 1) 100% pine bark (Pinus taeda L., PB), 2) 100% soil, 3) a mixture of 50 PB: 50 soil (by volume), or 4) 100% soil along the bottom of the quadrant to a depth of 10 cm (4 inches) and 100% PB layered 10 cm (4 inches) deep on top of the soil. Root growth along the glass panes of each quadrant was measured biweekly in Auburn and weekly in Blacksburg. Roots were longer in all treatments containing pine bark than in 100% soil. When pine bark was layered on top of soil, roots grew into the pine bark but did not grow into the soil. Results suggest that amending soil backfill with pine bark can increase posttransplant root growth of container-grown mountain laurel.

Free access

Rhizosphere pH preferences vary for species and can dramatically influence root growth rates. Research was conducted to determine the effect of root zone pH on the root growth of BuxusmicrophyllaSieb. & Zucc. `Green Beauty' (boxwood) and KalmialatifoliaL. `Olympic Wedding' (mountain laurel). Boxwood plants removed from 3.8-L containers and mountain laurel plants removed from 19-L containers were situated in the center of separate Horhizotrons™. The key design feature of the Horhizotron is four wedge-shaped quadrants (filled with substrate) that extend away from the root ball. Each quadrant is constructed from glass panes that allow the measurement of roots along the glass as they grow out from the root ball into the substrate. For this experiment, each quadrant surrounding a plant was filled with a pine bark substrate amended per m3 (yd3) with 0.9 kg Micromax (Scotts-Sierra, Marysville, Ohio) and 0, 1.2, 2.4, or 3.6 kg dolomitic limestone. All plants received 50 g of 15N–3.9P–9.8K Osmocote Plus (Scotts-Sierra), distributed evenly over the surface of the root ball and all quadrants. Plants were grown from May to Aug. 2003 in a greenhouse. Root lengths were measured about once per week throughout the experiment. Root length increased linearly over time for all species in all substrates. Rate of root growth of boxwood was highest in pine bark amended with 3.6 kg·m3 lime and lowest in unamended pine bark. Rate of root growth of mountain laurel was lowest in pine bark amended with 3.6 kg·m3 lime. Results support the preference of mountain laurel and boxwood for acidic and alkaline soil pH environments, respectively.

Free access

This study was conducted to determine the effects of temperature on nutrient release patterns of three polymer-coated fertilizers (PCFs), each using a different coating technology: Osmocote Plus 15N-3.93P-9.96K, Polyon 18N-2.62P-9.96K, and Nutricote 18N-2.62P-6.64K. Each fertilizer was placed in a sand-filled column and leached with distilled water at ≈100 mL·h-1, while being subjected to a simulated diurnal container temperature change from 20 to 40 °C and back to 20 °C over a period of 20 hours. Column leachate was collected hourly and measured for soluble salts and NO3-N and NH4-N content. For all fertilizers, nutrient release increased and decreased with the respective increase and decrease in temperature. Nutrient release patterns of the three fertilizers differed, with Osmocote Plus showing the greatest overall change in nutrient release between 20 and 40 °C, and Nutricote the least.

Free access

Use of polymer-coated fertilizers (PCFs) is widespread in the nursery and greenhouse industries. Temperature is the main factor affecting nutrient release from PCFs, yet there are few reports that quantify temperature-induced nutrient release. Since container substrate temperatures can be at least 40 °C during the summer, this research quantified the release of fertilizer salts in the diurnal container substrate temperature range of 20 to 40 °C. Three PCFs (Osmocote Plus 15-9-11, Polyon 18-6-12, and Nutricote18-6-8) were placed in water-filled beakers at 40 °C until one-third (Expt.1) or two-thirds (Expt. 2) of Osmocote's N was released. For Expts. 1 and 2, each fertilizer was put into sand-filled columns and leached with distilled water concurrent with column temperature incrementally increasing from 20 to 40 °C and then to 20 °C over a 20-h period. Leachate fractions were collected at every 2 °C increase and analyzed for fertilizer salts. In Expt.1 and in the range of 22 to 30 °C, salt release was highest, lowest, and intermediate for Nutricote, Osmocote, and Polyon, respectively. In the range of 38 to 40 °C, release was highest, lowest, and intermediate for Osmocote, Nutricote, and Polyon, respectively. In Expt. 2, salt release in the range of 22 to 30 °C was the same as in Expt. 1. However, at 38 to 40 °C, release was highest, lowest, and intermediate for Polyon, Nutricote, and Osmocote, respectively. Results show that salt release for PCFs are dependent on the temperature × fertilizer age interaction.

Free access

This study evaluated the effects of nine alternative substrates on herbicide efficacy in container-grown nursery crops: 1) VT (pine wood chips hammer-milled to pass a 0.4-cm screen); 2) USDA (pine wood chips hammer-milled to pass a 0.64-cm screen; 3) AUC (Pinus taeda chipped including needles); 4) AUHM (AUC hammer-milled to pass a 0.48-cm screen; 5) 1 VT: 1 commercial grade pinebark (v/v); 6) 1 USDA: 1 pinebark (v/v); 7) 1 AUC: 1 pinebark (v/v); 8) 1 AUHM: 1 pinebark (v/v); and 9) 6 pinebark: 1 sand (v/v). Each substrate was amended with 6.35 kg of 17–6–12 (17N–2.6P–10K) control-release fertilizer, 2.27 kg of lime, and 0.89 kg micromax per cubic meter. Containers (8.3 cm) were filled on 15 June and three herbicides applied the next day: Rout (oxyfluorfen + oryzalin at 2.24 + 1.12 kg·ha-1), Ronstar (oxadiazon at 4.48 kg·ha-1) and a nontreated control. The next day, containers were overseeded with 25 prostrate spurge seed. Data collected included weed counts 30 and 60 days after treatment (DAT) and weed fresh weights at 60 DAT. Spurge occurred less in the two treatments of 100% pine wood chips followed by the AUC treatment. With spurge, the least weed fresh weight occurred with the USDA and AUC treatments. For example, at 30 DAT, spurge count was reduced by 33%, 40%, and 70%, respectively, when comparing VT, USDA, and AUC to pinebark: sand. Spurge fresh weight at 60 DAT followed a similar trend. With all of the substrates except AUHM, the addition of commercially used pine bark resulted in less weed control. Rout provided superior control followed by Ronstar and the nontreated control. These data show that control of prostrate spurge with commonly used preemergent applied herbicides may actually be improved with some of the alternative substrates currently being tested.

Free access

Substrates of container-grown plants are commonly preplant amended with sulfated micronutrients to supply micronutrients. However, the cause for the increased growth may be due to micronutrient addition or other factors such as S addition or substrate acidification. Container-grown pin oak (Quercus palustris Müench) and japanese maple (Acer palmatum Thunb.) seedlings were grown in a 100% pine bark substrate and amended (or not) with one of the following treatments: control (no amendment), Micromax, K2SO4, H2SO4, HCl, chelated micronutrients, elemental S, or CaSO4. After 11 weeks, dry weights of plants in all treatments supplying S were higher than plants receiving no S. Dry weights of plants in all experiments receiving the chelate treatment were not higher than dry weights for control plants. These data indicate that S, not micronutrient application, is a primary cause of increased growth from the addition of sulfated micronutrients. However, it was demonstrated that there are conditions such as higher substrate solution pH (4.1 vs. 5.4), where Micromax may prove advantageous over sulfur alone since it would supply micronutrients as well as S.

Free access