Search Results

You are looking at 31 - 40 of 62 items for

  • Author or Editor: Mark H. Brand x
Clear All Modify Search

Significant occurrences of phenotypic variation have been noted in micropropagated Rhododendron. Studies were undertaken to determine what aspects of micropropagation lead to variation. Rhododendron `Molly Fordham' was used to evaluate growth parameters and the incidence of variation in plants that originated from 3 month and 54 month old cultures. Plants from 3-month-old cultures were significantly wider than plants from 54-month-old cultures. Rhododendron `Aglo', `Molly Fordham', and `Scintillation' were used to evaluate growth and the incidence of variation in plants grown from microcutting bases and rerooted microcutting tips (retips). Three-month-old retips were significantly taller and wider than bases of the same age, but possessed fewer branches. The influence of in vitro N6-[2-isopentenyl]adenine (2-iP) concentration on the growth and phenotype of regenerated plants of `Aglo', `Molly Fordham', and `Scintillation' was examined. Data taken 3 months post-acclimation indicate that growth and the incidence of variation in response to 2-iP concentration is cultivar dependent.

Free access

Interest in hemp (Cannabis sativa) for its medicinal compounds, cannabidiol (CBD), and Δ-9-tetrahydrocannabidiol (THC), continues to increase. Maximizing yield of CBD and/or THC requires female plants because female inflorescences accumulate significantly greater concentrations of these compounds than male inflorescences. Production of all female seed requires induction of female plants to develop male flowers that produce genetically female pollen. Growers would like access to feminized seed to produce all-female crops. We evaluated the efficacy of 0, 0.3, and 3 mm silver thiosulfate (STS) applied as a foliar spray (on three occasions 7 days apart) to produce male flowers on four strains of female hemp (having a THC concentration of ≤0.3%), designated CBD hemp A, CBD hemp B, CBD hemp C, and industrial hemp. Silver thiosulfate at 3 mm was the most efficacious treatment for all strains. The majority of inflorescences had 100% male flowers at 3 mm STS, and terminal inflorescences had ≥95% conversion to male flowers. Silver thiosulfate at 0.3 mm produced partial conversion to male flowers, whereas most inflorescences had around 50% male flowers, except for CBD hemp A, which demonstrated greater levels of masculinization. At 0.3 mm STS, terminal inflorescences of CBD hemp A had 91% conversion to male flowers. This study demonstrates that male flowers can be produced easily and consistently on female plants through application of foliar sprays of STS under short-day conditions.

Free access

Red-flowered elepidote rhododendrons (Rhododendron sp.) are favored by consumers, but cold-hardy red-flowered rhododendrons frequently have blue-red flower hue rather than the preferred red flower hue. Flower longevity, color, and color stability over 14 days were studied for the following eight elepidote rhododendron cultivars possessing red flowers: Besse Howells, Burma, Cary’s Red, Firestorm, Francesca, Henry’s Red, Low Red Frilled, and Nova Zembla. The eight cultivars were separated by flower hue into two distinct groups of four cultivars each. Rhododendron cultivars Burma, Firestorm, Francesca, and Henry’s Red produced flowers with red hue and Besse Howells, Cary’s Red, Low Red Frilled, and Nova Zembla produced flowers with blue-red hue. Flower longevity among rhododendron cultivars varied with Francesca blooms lasting the longest at over 14 days, and Besse Howells and Firestorm blooms lasting the shortest at 10 days. As flowers aged, hue angle decreased (became bluer), lightness increased, and chroma decreased or remained unchanged. The degree of change in flower color over time differed among cultivars, with ‘Francesca’ demonstrating the least change (ΔE 00 3) and ‘Besse Howells’ the most change (ΔE 00 11).

Full access

Intergeneric hybridization between Aronia and Pyrus may provide a pathway for developing novel fruit types with larger, sweeter fruits, while maintaining the high levels of biologically health-promoting compounds present in Aronia fruits. Here we describe a deleterious genetic incompatibility, known as hybrid necrosis or hybrid lethality, that occurs in intergeneric F1 hybrids of Aronia melanocarpa x Pyrus communis and ×Sorbaronia dippelii x Pyrus communis. Pollination experiments revealed that maternal A. melanocarpa and ×S. dippelii pistils are compatible with pollen from P. communis. Controlled pollinations using different mating combinations resulted in varying levels of fruit and seed set. Because every combination produced at least some viable seeds, prezygotic incompatibility does not appear to be present. We attempted to recover putative intergeneric progeny via either in vitro germination or in vitro shoot organogenesis from cotyledons. Progeny of putative hybrids from A. melanocarpa x P. communis only survived for a maximum of 14 days before succumbing to hybrid lethality. Regeneration of ×S. dippelii x P. communis was successful for two seedlings that have been maintained for an extended time in tissue culture. These two seedlings have leaf morphologies intermediate between the two parental genotypes. We also confirmed their hybrid status by using AFLPs and flow cytometry. Putative intergeneric hybrids were grown out ex vitro before showing symptoms of hybrid necrosis and dying after 3 months. Eventually micrografts failed, ultimately showing the same symptoms of hybrid necrosis. These results show that intergeneric hybridization is possible between Aronia and related genera in the Rosaceae, but there are postzygotic barriers to hybridity that can prevent the normal growth and development of the progeny.

Open Access

There is demand for early-flowering cannabis (Cannabis sativa) cultivars to hasten harvest and avoid late-season detrimental weather conditions. A field study and greenhouse studies were conducted to evaluate the effect of gene dosage at the autoflowering locus on flowering timing for diploid and triploid hybrids between autoflowering and photoperiod-sensitive parents. Autoflowering × photoperiod-sensitive hybrids were all photoperiod sensitive, but their critical photoperiods were longer than for homozygous photoperiod-sensitive plants, which resulted in earlier flowering. For triploid genotypes, decreasing dosage of the photoperiod-sensitive allele (A), from AAA to AAa to Aaa, reduced the time to flowering. Flowering timing for the diploid genotype Aa was intermediate between Aaa and AAa. These results provide evidence of incomplete dominance of the A allele at the autoflowering locus. Plants of genotype Aaa flowered 32 to 40 days earlier in the field than genotypes of AA, 15 days earlier than genotype Aa, and were ready for harvest by the second week of August in Connecticut. Plants of Aaa were as tall as other diploid and triploid photoperiod-sensitive genotypes studied, which suggests that they have similar yield potential. The use of tetraploid autoflowering (aaaa) maternal plants in combination with diploid photoperiod-sensitive (AA) pollen parents to produce Aaa genotype seed is a reliable approach for developing early-flowering cultivars of cannabis for flower production purposes.

Open Access

Aroniaberry (Aronia mitschurinii) produces small pome fruits that possess health promoting compounds. Management practices for orchards are lacking, since aroniaberry is a relatively new crop. Pruning is an important cultural practice to optimize fruit yield in orchards. The response of an established aroniaberry orchard to pruning was evaluated over three years (2020 to 2022). Pruning treatments were as follows: 1) renewal pruning (removal of shoots to the base) only in year 1; 2) renewal pruning in year 1 + thinning to 18 shoots in year 2; 3) renewal pruning in year 1 + thinning to 9 shoots in year 2; and 4) no-pruning (control). In response to renewal pruning, plants grew uniformly and vigorously, producing 28 new vegetative primary shoots with an average length of 66 cm by the end of the first growing season. Limited flowering and fruiting occurred in the second season for plants receiving pruning treatments. Fruit yield on pruned plants was significantly less than for unpruned controls. In season 2, increased thinning of renewal-pruned plants negatively affected the number of inflorescences per plant, but positively affected individual fruit fresh weight and fruit °Brix:titratable acidity ratios. Fruits from all treatments had similar monomeric anthocyanins, total phenolics and mineral content. In season 3, flower production and predicted fruit yield from pruned plants and unpruned controls were similar, even though pruned plants were substantially smaller. In the third season, there were no longer any differences between renewed + thinned plants and those that received only renewal pruning, making shoot thinning an unnecessary practice. The results of this study demonstrate that renewal pruning can be an effective way to manage and rejuvenate an aging aroniaberry orchard.

Open Access

To maximize yield, cannabidiol (CBD) hemp producers prefer female plants, and this is accomplished by using expensive feminized seed, vegetatively propagated female clones, or by removing male plants from dioecious seed lots. Hemp pollen drifts long distances on wind, and pollination of females reduces CBD content. Induction of triploidy is a common strategy used by plant breeders to produce sterile cultivars of agricultural crops. Triploid (3n) hemp, with three sets of chromosomes, was developed by crossing naturally diploid (2n) hemp with tetraploid (4n) hemp. Tetraploid plants used to create triploids were produced using pregerminated seeds and the mitotic spindle inhibitor colchicine. Seedlings from seeds of ‘Abacas’ × [(‘Otto2’ × ‘BaOx’) × (‘BaOx’ × ‘Colorado Cherry’)] treated with 0.05% colchicine or 0.02% colchicine for 12 hours and longer were significantly shorter than controls and ≤1 cm tall at 10 days after sowing. Surviving seedlings exhibited thickened cotyledons and hypocotyls, which indicated a potential change in ploidy. Tetraploid induction ranged from 26% to 64% for pregerminated seeds of five different hemp cultivars (Abacus × Wife, Cherry Wine, Mountain Mango, Wife, and Youngsim10) treated with 0.05% colchicine for 12 hours. Tetraploids had nearly twice the DNA content as diploids according to flow cytometric analysis. Tetraploid ‘Wife’ had larger stomates and reduced stomatal density compared with diploid ‘Wife’. Four triploid ‘Wife’ genotypes produced from crossing tetraploid ‘Wife’ with diploid ‘Wife’ were acclimated to greenhouse conditions after embryo rescue. DNA content and stomate size of triploid ‘Wife’ was intermediate between the parents. This is the first report of triploid plants of hemp. Future research will evaluate the sterility of triploid hemp.

Open Access

Cannabis (Cannabis sativa) grown for flowers containing cannabinoids requires all female plants, which are susceptible to seed set from exposure to pollen. Created triploids demonstrated reduced seed production compared with diploids in field and greenhouse studies in which plants were challenged with pollen from males. In the field, seed production as a percent of floral biomass ranged from 6.7% to 18.0% for triploids and from 52.6% to 57.1% for diploids. The photoperiod-insensitive triploid genotype ‘Purple Star’ × ‘Wilhelmina’ had 98.5% fewer filled (containing a developed embryo) seeds than the photoperiod-insensitive diploid genotype ‘Tsunami’ × ‘Wilhelmina’. In the greenhouse, triploid ‘Wife’ had 99.5% fewer filled seeds than diploid ‘Wife’. Plant growth and flower production were similar with eight triploid and seven diploid genotypes evaluated over three greenhouse studies. There were a few superior triploid and diploid genotypes; however, their performance was more likely attributable to the parental cultivar combination than ploidy level. The optimal cross direction for producing triploid seed in large quantities is tetraploid × diploid because the diploid × tetraploid cross exhibits triploid block caused by endosperm paternal excess. Colchicine-induced tetraploid parent plants should be tested over a prolonged period to eliminate cryptic chimeral mixoploids or tetraploid plants should be derived from seed produced by crossing two colchicine-induced putative tetraploid plants to ensure that seeds from tetraploid × diploid crosses will be triploid. The latter approach is necessary for photoperiod-insensitive cultivars because a prolonged period of ploidy testing is not possible for these plants. These findings indicate that triploid plants have significantly reduced fertility and are a suitable alternative to diploids in situations in which pollen exposure is possible.

Open Access