Search Results

You are looking at 31 - 40 of 46 items for

  • Author or Editor: M.L. Smith x
Clear All Modify Search
Authors: , , and

The only method for large scale production of pure hybrid seed in Zinnia elegans involves the use of male sterile individuals. The male sterile trait, however, is a three gene recessive which at best produces only 50% male sterile progeny from seed. Since no method of clonal propagation is available, seed-produced female lines require labor intensive field roguing to insure removal of all normal flowered individuals. Clonal micropropagation was investigated as a means of mass producing male steriles for use as female lines. Sterilization procedures were developed for seed and axillary bud explants. Shoot proliferation media containing various levels of BAP, 2ip, and kinetin were screened using in vitro germinated seedling explants of the inbred line `Orange Starlight'. Microshoots demonstrated a high rooting percentage after 2 weeks on basal medium without growth regulators. Plantlets were easily acclimated in 1 to 2 weeks in a high humidity environment. In vitro derived plants of identified male sterile plants were phenotypically evaluated as to their suitability for use in field production.

Free access

Effects of salinized irrigation water on tree canopy and root growth, water use, foliar nutrition, and leaching losses below the rootzone were studied during a 2-year period using single tree lysimeters. Eighteen 6-year-old `Valencia' orange trees on either Carrizo citrange (CC) rootstock or sour orange (SO) rootstock were each transplanted into 7.8 m3 drainage lysimeters and irrigated with water having an electrical conductivity of 0.3, 1.6, or 2.5 dS m-1 from a 3:1 ratio of NaCl:CaCl2. Six additional trees (3 on each rootstock) were transplanted into soil without tanks. Trees outside the tanks were smaller, but nutritionally similar to the low salinity trees in lysimeters. Trees on CC were larger, had greater root densities, and were associated with less leaching of ions and nutrients into drainage water from the tanks than trees on SO. High salinity irrigation water reduced canopy growth and ET, but increased fibrous root dry weight. Trees on CC accumulated more Cl in leaves and in fruit juice than those on SO. Leaching loss of total N varied from 2-8% of that annually applied to trees, but up to 70% of the applied N and up to 80% of the applied K were leached from the blank tank with no tree. Salinized trees lost more N and K to drainage water, especially those on SO. Tree size, root density, and irrigation water quality can influence leaching losses beyond the rootzone.

Free access

Industrial-scale cultivation of plant cells for valuable product recovery (e.g. natural pigments, pharmaceutical compounds) can only be considered commercially-feasible when a fully-automated, predictable bioprocess is achieved. Automation of cell selection, quantification, and sorting procedures, and pinpointing of optimal microenvironmental regimes can be approached via machine vision. Macroscopic staging of Ajuga reptans callus masses (ranging between 2-6 g FW) permitted simultaneous rapid capture of top and side views. Area data used in a linear regression model yielded a reliable, non-destructive estimate of fresh mass. Suspension culture images from the same cell line were microscopically imaged at 4x (with an inverted microscope). Using color machine vision, the HSI (hue-saturation-intensity) coordinates were used to successfully separate pigmented cells and aggregates from non-pigmented cells, aggregates, and background debris. Time-course sampling of a routine suspension culture consistently allowed pigmented cells to be detected, and intensity could be correlated with the degree of pigmentation as verified using spectrophotometer analysis of parallel samples.

Free access

Five- to six-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on `Volkamer' lemon [VL = C. volkameriana (Ten. & Pasq.)] or sour orange (SO = C. aurantium L.) rootstock, were grown individually in 7.9-m3 lysimeters for 2.5 years using low to high rates of fertilizer N. Net CO2 assimilation (ACO2) of leaves and leaf dry mass per area (DM/a) increased with leaf N concentration, whereas leaf tissue C isotope discrimination (Δ) decreased. Leaf tissue Δ was negatively related to ACO2 and DM/a. Transient effects of rootstock on leaf N were reflected by similar effects on Δ. There was no effect of leaf N on water-use efficiency (WUE) of leaves (WUEL = ACO2/transpiration); WUEL was not correlated with Δ. Although photosynthetic N use efficiency (ACO2/N) consistently decreased with increased leaf N, Δ was not consistently related to ACO2/N. Annual canopy growth, tree evapotranspiration (ET), and fruit yield increased with whole tree N uptake. Leaf tissue Δ was negatively related to all of these tree measurements at the end of the second year. By that time, whole-tree WUE (WUET, annual canopy growth per ET) also was negatively related to Δ. Larger trees on VL had higher ET than trees on SO, but there were no rootstock effects on WUET or on Δ. Leaf tissue Δ was consistently higher than Δ values of trunk and woody root tissues. Citrus leaf tissue Δ can be a useful indicator of leaf N, characteristics of leaf gas exchange, tree growth, yield, and WUET in response to N availability.

Free access

High salinity and boron often occur together in irrigation water in arid climates, but very little research has been done to study the interaction of the two. A greenhouse experiment was conducted at the US Salinity Laboratory in sand tanks to evaluate the interactions between B and saline drainage water on the performance of broccoli. Particular interest in this study was directed towards the composition of the salinizing solution to determine what role various salts have on the salinity-boron interaction. Results from this study indicate that both Cl-based salts and those characteristic of saline drainage water (i.e., a mixture of salts dominated by sodium sulfate) showed a significant salinity–boron interaction. At high salinity, increased B concentration was less detrimental, both visually and quantitatively (i.e., biomass), than it was at low salinity. That is, plants could tolerate a higher solution B-concentration at higher salinity. However, there was no significant difference between salt types. The effects on head weights were more exaggerated than those on shoot biomass. Shoot B concentration was influenced by salinity, but interestingly the direction of influence was dependent upon the B concentration in the solution. Regardless of the composition of the salinizing solution, increased salinity increased shoot B concentration when B concentrations in the solution were relatively low (i.e., 0.5 mg·L-1). At the highest solution B concentration (28 mg·L-1), increased salinity reduced shoot B concentration. Solution B in itself had very little influence on shoot ion accumulation, but both salinity (i.e., EC) and salinity composition had very strong influences on shoot tissue ion composition. Therefore, these data indicate that salinity and B are antagonistic.

Free access

Natural plant pigments (produced as secondary metabolites in cell culture) can replace controversial synthetic chemical colorants to enhance the appearance of processed foods. Intensive bioreactor-based production systems designed for betalain pigment-producing cultures of Beta vulgaris are still not economically competitive, in part due to the slow, prohibitively expensive, and incomplete conventional methods (HPLC analysis, biomass estimates, cell counts) which must be used to assess culture status. As an alternative, software was written using Semper 6 (a high level programming language for image analysis) for collection of exacting morphometric (spatial) and photometric (spectral) process information from an intense violet cell line. Uniform, crisp images of 1 ml culture samples in multiwell plates were captured macroscopically, and the pattern of pigment production was traced at 3 day intervals over the course of a 15 day growth cycle with monochromatic color filters and image grey level data. Rod-shaped cells and aggregates were automatically sorted and measured using parameters of particle size, density, and circularity. The machine vision method offers greater opportunity to fine-tune cell selection for enhanced pigment content.

Free access