Search Results

You are looking at 31 - 40 of 42 items for

  • Author or Editor: Judy Thies x
Clear All Modify Search

Resistance of two sets of bell pepper [(Capsicum annuum L. var. annuum (Grossum Group)] cultivars near-isogenic for the N gene that conditions resistance to root-knot nematodes [Meloidogyne incognita (Chitwood) Kofoid and White, M. arenaria (Neal) Chitwood races 1 and 2, and M. javanica (Treub) Chitwood] was evaluated in field tests at Blackville, S.C. and Charleston, S.C. The isogenic bell pepper sets were `Charleston Belle' (NN) and `Keystone Resistant Giant' (nn), and `Carolina Wonder' (NN) and `Yolo Wonder B' (nn). The resistant cultivars Charleston Belle and Carolina Wonder were highly resistant; root galling was minimal for both cultivars at both test sites. The susceptible cultivars Keystone Resistant Giant and Yolo Wonder B were highly susceptible; root galling was severe at both test sites. `Charleston Belle' had 96.9% fewer eggs per g fresh root than `Keystone Resistant Giant', and `Carolina Wonder' had 98.3% fewer eggs per g fresh root than `Yolo Wonder B' (averaged over both test sites). `Charleston Belle' and `Carolina Wonder' exhibited a high level of resistance in field studies at both sites. These results demonstrate that resistance conferred by the N gene for root-knot nematode resistance is effective in field-planted bell pepper. Root-knot nematode resistant bell peppers should provide economical and environmentally compatible alternatives to methyl bromide and other nematicides for managing M. incognita.

Free access

Root-knot nematode-resistant rootstock lines (designated RKVL for Root-Knot Vegetable Laboratory) derived from wild watermelon (Citrullus lanatus var. citroides) were compared with wild tinda (Praecitrullus fistulosus) lines and commercial cucurbit rootstock cultivars for grafting of seedless triploid watermelon ‘Tri-X 313’ (C. lanatus var. lanatus) in a field infested with the southern root-knot nematode (RKN) (Meloidogyne incognita) in Charleston, SC, during 2009 and 2010. In both years, RKN infection was severe in ‘Emphasis’ bottle gourd, ‘Strong Tosa’ hybrid squash, and wild tinda rootstocks with galling of the root system ranging from 86% to 100%. In 2009, the RKVL wild watermelon rootstocks exhibited lower (P < 0.05) percentages of root galling (range 9% to 16%) than non-grafted ‘Tri-X 313’ (41%), ‘Emphasis’, ‘Strong Tosa’, and the wild tinda rootstocks. The grafted wild watermelon rootstock RKVL 318 produced more (P ≤ 0.05) fruit (12 per plot) than all other entries (mean = five per plot), and it produced a heavier (P ≤ 0.05) fruit yield (29.5 kg per plot) than all entries except self-grafted ‘Tri-X 313’ (21.5 kg per plot). In 2010, soil in half of the plots was treated with methyl bromide (50%):chloropicrin (50%) (392 kg·ha–1) before planting. The RKVL wild watermelon rootstocks exhibited resistance to RKN with percentages of root system galled ranging from 11% for RKVL 316 to 56% for RKVL 301 in the untreated control plots. Fruit yields in the untreated plots were 21.9, 25.6, and 19.9 kg/plot for RKVL 301, RKVL 316, and RKVL 318, respectively. Yields were greater (P ≤ 0.05) for the three RKVL rootstocks than for ‘Strong Tosa’ (3.0 kg) and ‘Ojakkyo’ wild watermelon rootstock (2.8 kg) in the untreated plots. Yields of watermelon grafted on ‘Strong Tosa’ were nearly seven times greater (P ≤ 0.05) in the methyl bromide-treated plots than in the untreated plots. In contrast, yields of RKVL 316 and RKVL 318 were similar in both treatments and the yield of RKVL 301 was less (P ≤ 0.05) in the methyl bromide-treated plots than in the untreated plots. The three RKVL wild watermelon rootstock lines exhibited resistance to RKN. RKVL 316 had low root galling and produced the heaviest fruit yield and greatest numbers of fruit of any rootstock evaluated in 2010. The RKVL lines should be useful sources of RKN resistance for rootstocks for grafted watermelon.

Free access

Interest in specialty melons (Cucumis melo) with distinctive fruit characteristics has grown in the United States in recent years. However, disease management remains a major challenge in specialty melon production. In this study, grafting experiments were conducted to determine the effectiveness of using Cucumis metulifer, a species known for its genetic resistance to root-knot nematodes (RKNs; Meloidogyne spp.), as a potential rootstock for managing RKNs in susceptible specialty melon cultivars. In the greenhouse experiment, honeydew melon ‘Honey Yellow’ was grafted onto C. metulifer and inoculated with M. incognita race 1. The grafted plants exhibited significantly lower gall and egg mass indices and fewer eggs compared with non- and self-grafted ‘Honey Yellow’. Cucumis metulifer was further tested as a rootstock in conventional and organic field trials using honeydew melon ‘Honey Yellow’ and galia melon ‘Arava’ as scions. ‘Honey Yellow’ and ‘Arava’ grafted onto C. metulifer exhibited significantly lower galling and reduced RKN population densities in the organic field; however, total and marketable fruit yields were not significantly different from non- and self-grafted plants. Although the improvement of RKN resistance did not translate into yield enhancements, incorporating grafted specialty melons with C. metulifer rootstock into double-cropping systems with RKN-susceptible vegetables may benefit the overall crop production by reducing RKN population densities in the soil. At the conventional field site, which was not infested with RKNs, ‘Honey Yellow’ grafted onto C. metulifer rootstock had a significantly lower total fruit yield than non-grafted ‘Honey Yellow’ plants; however, fruit yields were similar for ‘Arava’ grafted onto C. metulifer rootstock and non-grafted ‘Arava’ plants. Although no significant impacts on the fruit quality attributes of ‘Honey Yellow’ were observed, grafting onto C. metulifer decreased the flesh firmness of ‘Arava’ in both field trials and resulted in a reduction in total soluble solids content under conventional production. In summary, grafting RKN-susceptible melons onto C. metulifer rootstock offers promise for growing these specialty melons; however, more studies are needed to elucidate the scion–rootstock interaction effect on fruit yield and quality.

Free access

Root-knot nematode-resistant `Charleston Belle' bell pepper (Capsicum annuum L. var. annuum) and metam sodium treatment were evaluated for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall-cropped cucumber (Cucumis sativus L.). `Charleston Belle' and its susceptible recurrent parent, `Keystone Resistant Giant', were planted as spring crops at Blackville, S.C., and Tifton, Ga. `Charleston Belle' exhibited high resistance and `Keystone Resistant Giant' was susceptible at both locations. After termination of the bell pepper crop, one-half of the plots were treated with metam sodium delivered through the drip irrigation system. Cucumber yields and numbers of fruit were highest for cucumber grown in plots treated with metam sodium following either `Charleston Belle' or `Keystone Resistant Giant'; however, root gall severity and numbers of M. incognita eggs in the roots were lowest for cucumber grown in plots treated with metam sodium following `Charleston Belle'. Conversely, root gall severity and nematode reproduction were highest for cucumber grown in plots following `Keystone Resistant Giant' without metam sodium treatment. Application of metam sodium through the drip irrigation system following a spring crop of root-knot nematode-resistant bell pepper should reduce severity of root galling and reproduction of M. incognita as well as increase fruit yield of fall-cropped cucumber.

Free access