Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: Jonathan M. Frantz x
Clear All Modify Search
Free access

Jonathan M. Frantz, Glen Ritchie, Nilton N. Cometti, Justin Robinson and Bruce Bugbee

The productivity of lettuce in a combination of high light, high temperature, and elevated CO2 has not been commonly studied because rapid growth usually causes a calcium deficiency in meristems called tipburn, which greatly reduces quality and marketability. We eliminated tipburn by blowing air directly onto the meristem, which allowed us to increase the photosynthetic photon flux (PPF) to 1000 μmol·m-2·s-1 (57.6 mol·m-2·d-1); two to three times higher than normally used for lettuce. Eliminating tipburn doubled edible yield at the highest PPF level. In addition to high PPF, CO2 was elevated to 1200 μmol·m-2·mol-1, which increased the temperature optimum from 25 to 30 °C. The higher temperature increased leaf expansion rate, which improved radiation capture and more than doubled yield. Photosynthetic efficiency, measured as canopy quantum yield in a whole-plant gas exchange system, steadily increased up to the highest temperature of 32 °C in high CO2. The highest productivity was 19 g·m-2·d-1 of dry biomass (380 g·d-1 fresh mass) averaged over the 23 days the plants received light. Without the limitation of tipburn, the combination of high PPF, high temperature, and elevated CO2 resulted in a 4-fold increase in growth rate over productivity in conventional environments.

Free access

Gregory E. Welbaum, Jonathan M. Frantz, Malkanthi K. Gunatilaka and Zhengxing Shen

Sweet corn (Zea mays L.) cultivars containing the shrunken-2 (sh2) gene have superior kernel quality but often germinate poorly and display poor seedling vigor. The transplanting of sh2 sweet corn was investigated as a method to improve stand establishment and hasten maturity. Three-week-old plants (sh2 cv. Krispy King) were raised in 200-cell polystyrene trays in either plug-trays (PT), float beds (FB), or ebb-and-flood (EF) production systems and compared with direct-seeded (DS) controls for transplant quality, successful establishment, and early harvest. In 1994, when plants were established in early June, PT plants matured 1 week earlier than DS and FB plants, which had similar mean times to harvest. In 1995, when field planting occurred in July, all plants flowered prematurely when only 60 cm tall. In 1996, the experiment was begun in early May, and survival of all transplants was >85% vs. 54% for DS plants. In 1996, transplants matured 10 to 13 days earlier than DS plants, however, >90% of DS plants produced marketable ears vs. 63%, 49%, and 44% of EF, FB, and PT plants, respectively. The DS plants were also taller with better root development than transplants in all years. Transplants produced smaller, lower-quality ears than did DS plants, thus nullifying the benefits of greater plant populations and earlier maturity. The EF system produced high-quality seedlings because of the greater control of water availability during seedling development. In some areas, the increased value of early sh2 sweet corn may be worth the additional cost of transplanting and greater percentage of unmarketable ears.