Search Results
You are looking at 31 - 40 of 65 items for
- Author or Editor: John M. Ruter x
Respiration of excised Ilex crenata `Rotundifolia' roots as influenced by root-zone growth temperature and buffer solution temperature was measured in the presence and absence of SHAM and KCN. Respiration rates of roots excised from plants grown for three weeks at root-zone temperatures of 30, 34, 38, and 42 C decreased linearly as root-zone temperature increased when the buffer solution was maintained at 25 C. When the buffer solution temperature was the same as the root growth temperature, no differences in respiration rate were found. When plants were grown at a root-zone temperature of 30 C, respiration was maximal at 34 C and decreased to a minimum at 46 C. Above 46 C, stimulation of O2 consumption occurred which was presumed to be extra-mitochondrial. CN-resistant pathway activity decreased at a buffer solution temperature of 46 C which was similar to the critical threshold temperature (48±1.5 C) for `Rotundifolia' holly roots.
High root-zone temperatures have been shown to affect photosynthate partitioning, respiration, nitrogen nutrition and growth of `Rotundifolia' holly. The loss of chlorophyll and protein in shoots of other plants in response to high root-zone temperatures has been documented. Therefore, the objectives of this research were to look at the effects of supraoptimal root-zone temperatures on RUBISCO activity, leaf protein and photosynthetic pigment levels.
Soluble protein levels in leaves increased linearly as root-zone temperature increased from 30 to 42 C. RUBISCO activity per unit protein and per unit chlorophyll responded quadratically to root-zone temperatures. Total chlorophyll, chlorophyll a & b, and carotenoid levels decreased linearly with increasing root-zone temperature. It is possible that `Rotundifolia' holly was capable of redistributing nitrogen to maintain RUBISCO activity for photosynthesis.
Respiration of excised Ilex crenata (Thunb.) `Rotundifolia' roots as influenced by root-zone growth temperature and buffer solution temperature was measured in the presence and absence of salicylhydroxamic acid (SHAM) and potassium cyanide (KCN). Respiration rates of roots excised from plants grown for 3 weeks with root-zones at 30, 34, 38, or 42C decreased linearly with increased root-zone growth temperatures when the buffer solution was maintained at 25C. When the buffer solution was the same temperature as the root growth temperature, respiration rates were similar. Respiration in roots from plants grown with the root zone at 30C was maximal with the buffer solution at 34C and decreased to a minimum at 46C. Above 46C, a presumably extra-mitochondrial stimulation of O2 consumption occurred. The activity of the CN-resistant pathway was fully engaged (P' = 0.99) when roots were grown at 30C and buffer solution was at 25C (30-25). CN-resistant pathway activity decreased with `the buffer solution at 46C.
The genus Pavonia is one of the largest genera in the Malvaceae species; it is mainly distributed in South America. Three species of Pavonia were identified based on different flower colors and potential for landscape use in the southeastern United States. These species produce a large amount of seed at the end of the blooming season, which is not ideal for ornamental use. To reduce the seed set, gamma irradiation was used for mutation induction and propensity to induce compactness and sterility. A preliminary study indicated that the seed of Pavonia hastata would germinate at irradiation rates up to 2000 Gy. Seeds of three species were treated with six different dose rates ranging from 0 Gy to 1000 Gy to determine the ideal rate for Pavonia breeding and how gamma irradiation affected seed germination. M1 (the first mutant generation) P. lasiopetala and P. missionum were sown in 2018 and planted in the field at the University of Georgia Durham Horticulture Farm on 1 May 2019, as were M2 (the second mutant generation) seeds of P. hastata. Seed germination in 2019 showed no significance due to treatment but significance due to species and species by treatment interaction. Field evaluation performed in 2019 indicated that height was not influenced by irradiation for any of the three species but that the width index was. Flower diameter and leaf area of P. missionum became smaller as the irradiation rate increased, but the other two species showed no trends. Chlorophyll mutations were observed on P. hastata at the 1500 Gy level, which has attractive traits for ornamental use.
Genome size estimates and chromosome number information can be useful for studying the evolution or taxonomy of a group and also can be useful for plant breeders in predicting cross-compatibility. Callicarpa L. is a group of ≈140 species with nearly worldwide distribution. There are no estimates of genome size in the literature and the information on chromosome numbers is limited. Genome size estimates based on flow cytometry are reported here for 16 accessions of Callicarpa comprising 14 species in addition to chromosome counts on six species. Chromosome counts were conducted by staining meristematic cells of roots tips using modified carbol fuchsin. Holoploid genome size estimates ranged from 1.34 pg to 3.48 pg with a mean of 1.74 pg. Two tetraploids (2n = 4x = 68; C. salicifolia P'ei & W. Z. Fang and C. macrophylla Vahl GEN09-0081) were identified based on holoploid genome size and confirmed by chromosome counts. There was little variation among species for monoploid genome size. 1Cx-values ranged from 0.67 pg to 0.88 pg with a mean of 0.77 pg. Chromosome counts for six species revealed a base chromosome number of x = 17. Callicarpa chejuensis Y. H. Chung & H. Kim, C. japonica Thunb. ‘Leucocarpa’, C. longissima Merr., and C. rubella Lindl. were confirmed as diploids (2n = 2x = 34). Cytology supported flow cytometry data that C. salicifolia and C. macrophylla GEN09-0081 were tetraploids. The two accessions of C. macrophylla included in the study were found to be of different ploidy levels. The presence of two ploidy levels among and within species indicates that polyploidization events have occurred in the genus.
Interest in plant species that support pollinator health has been increasing in recent years. As a result, research into these historically overlooked species is increasing. One such taxon is milkweed (Asclepias spp.), a genus primarily native to North America that serves as an oviposition and food source for various pollinators, especially the monarch butterfly (Danaus plexippus L.). Although exhaustive research has been conducted on Asclepias flower morphology, seed production, and pollinator impact, little cytological work has been published. Knowing the genome size of species can predict their ability to hybridize and the potential of genetic variability within a genus. Our study used 15 different Asclepias species and four interspecific Asclepias hybrids, and the total genomic content was calculated using propidium iodide. We found the 2C genome size ranged from 0.65 to 1.24 picograms. To our knowledge, our research presents data on eight species with previously unknown genomic content and is the first to report 2C values for interspecific Asclepias hybrids.
Salvia is a genetically diverse genus in the Lamiaceae family, with hundreds of species distributed globally. With base chromosome numbers ranging from 6 to 19 and ploidy levels ranging from diploid to octoploid, the genus has been proposed to be subdivided based on molecular data rather than morphology. However, little is known about total DNA content across the genus. The DNA content of 141 Salvia genotypes were analyzed using flow cytometry. Samples of Salvia were stained with propidium iodide and compared with the internal standards Pisum sativum ‘Ctirad’ and Solanum lycopersicum ‘Stupické’ to generate estimations of DNA content. Holoploid 2C genome sizes of the analyzed Salvia ranged from 0.63 pg to 6.12 pg. DNA content showed a wide distribution across chromosome number, ploidy, and clade. The wide distribution of DNA content across the genus further indicates the diversity of Salvia and may be useful for future breeding efforts.
Salvia is the largest genus in the Lamiaceae with more than 1000 species. The species S. coccinea used in this study has naturalized in the southeastern United States and is an important plant for pollinators. This project aimed to improve phenotypic characteristics of S. coccinea for use in the landscape by selecting for increased petal size and unique petal color. Two elite accessions were selected for hybridization using the pedigree method. One selection displayed compact habit with bicolored coral and white flowers, while the other was slightly larger with solid red flowers. Selections were made based on improved flower color and larger petal size. The breeding program achieved a 25% increase in petal width and a more vivid petal color for the coral bicolored selections. Additionally, a 60% increase in petal width was achieved for red flowers. These novel selections are attractive plants for the landscape, displaying improved ornamental value and supporting local pollinator populations.