Search Results

You are looking at 31 - 35 of 35 items for :

  • Author or Editor: John M. Dole x
  • HortTechnology x
Clear All Modify Search

Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole; foliar sprays of ethephon and flurprimidol; and substrate drenches of flurprimidol were compared for height control of `Anna Marie' hyacinths (Hyacinthus orientalis). Preplant bulb soak concentrations of flurprimidol and paclobutrazol were from 25 to 400 mg·L-1, and uniconazole from 5 to 80 mg·L-1. Height control was evaluated at anthesis and 11 days later under postharvest conditions. Ethephon (250 to 2000 mg·L-1) and flurprimidol (5 to 80 mg·L-1) foliar sprays were ineffective. Flurprimidol (0.25 to 4 mg/pot) drenches had no effect during forcing, but controlled postharvest height at concentrations ≥0.25 mg/pot a.i. with at least 4% shorter plants than the untreated control. Preplant bulb soaks resulted in height control with flurprimidol ≥25 mg·L-1, paclobutrazol ≥100 mg·L-1, and uniconazole ≥40 mg·L-1; having at least 9%, 6%, and 19%, respectively, shorter plants than the untreated control. Based on our results, flurprimidol preplant bulb soaks have a greater efficacy than either uniconazole or paclobutrazol. Preplant PGR soaks are a cost-effective method of controlling plant height of hyacinths because of the limited amount of chemical required to treat a large quantity of bulbs.

Full access

Three experiments were conducted to determine the effectiveness of plant growth regulators (PGRs) on `Tete a Tete', `Dutch Master', and `Sweetness' narcissus (Narcissus pseudonarcissus). Ethephon foliar sprays (500 to 2500 mg·L-1) and substrate drenches of flurprimidol and paclobutrazol (0.25 to 4 mg/pot a.i.) did not control height during greenhouse forcing of `Tete a Tete' at any concentration trialed. Stem stretch was controlled during postharvest evaluation with ethephon foliar sprays ≥1000 mg·L-1, flurprimidol substrate drenches ≥0.5 mg/pot a.i., and paclobutrazol substrate drenches of 4 mg/pot a.i. A second experiment investigated preplant bulb soaks of flurprimidol (10 to 40 mg·L-1) applied to `Dutch Master' and `Tete a Tete' narcissus bulbs. Flurprimidol preplant bulb soaks controlled postharvest stretch on `Tete a Tete' and `Dutch Master' at concentrations ≥15 and ≥10 mg·L-1, respectively. A third experiment was conducted with paclobutrazol (75 to 375 mg·L-1) on `Tete a Tete' and `Dutch Master' and three concentrations of flurprimidol on `Sweetness' to determine optimal soak recommendations. Paclobutrazol preplant bulb soaks ≥75 mg·L-1 controlled postharvest stretch of `Tete a Tete' and `Dutch Master', while 37.5 mg·L-1 of flurprimidol controlled postharvest stretch of `Sweetness'. Based on the results of these experiments, growers can now select a PGR to help control excessive plant growth.

Full access

Field seedling emergence of four african marigold (Tagetes erecta) breeding lines, A-975, E-1236, I-822, and `Orange Lady', was examined using three or four spring sowing dates and either osmotic or solid matrix priming. Delayed sowing decreased emergence time. Sowing from middle to late April [average soil temperatures 77.0 to 84.2 °F (25 to 29 °C)] resulted in the highest total emergence percentages. Greater fl ower quantities [4.9 to 5.1 million/acre (12.11 to 12.60 million/ha)] and estimated yield [7.5 to 10.8 tons/acre (16.81 to 24.20 t·ha-1)] indicate mid to late April is the optimum time period for direct sowing unprimed seed in the southern Great Plains. Differences between lines were evident in emergence parameters and fl ower harvest data for each year examined, but results were inconsistent from year to year. However, A-975 and E-1236 produced harvestable fl owers most quickly, about 15 d before I-822, which could result in an additional harvest during a season. Osmotic priming of E-1236 and I-822 seed shortened emergence time, increased emergence uniformity, and increased total emergence percentage at early sowing dates as compared to both solid matrix primed and unprimed seed.

Full access

Vase life of ‘Karma Thalia’ dahlia (Dahlia ×hybrida), ‘Lace Violet’ linaria (Linaria maroccana), ‘Sunrise’ lupine (Lupinus hartwegii ssp. cruickshankii), ‘Temptress’ poppy (Papaver nudicaule), ‘Indian Summer’ rudbeckia (Rudbeckia ×hybrida), ‘Jemmy Royal Purple’ trachelium (Trachelium caeruleum), and ‘Benary's Giant Scarlet’ and ‘Sun Gold’ zinnias (Zinnia elegans) was determined after being subjected to postharvest handling procedures. Cut dahlia, lupine, poppy, rudbeckia, trachelium, and ‘Sun Gold’ and ‘Benary's Giant Scarlet’ zinnia flowers could be held in unamended tap or deionized (DI) water with no effect on vase life. Vase life of linaria was longest when placed in DI water with 8-hydroxyquinoline citrate and a solution pH of 3.5. A vase solution of 2% sucrose without foam extended consumer vase lives for linaria, trachelium, and ‘Benary's Giant Scarlet’ zinnia. Floral foam or 2% or 4% sucrose had no effect on the consumer vase life of dahlia, lupine, rudbeckia, and poppy. Trachelium and rudbeckia did not tolerate a 20% sucrose treatment for 24 h, whereas linaria and ‘Benary's Giant Scarlet’ zinnia had a longer vase life with a 10% sucrose pulse than a water-only pulse. For trachelium, the longest (17.5 days) consumer vase life occurred when the Chrysal Professional 2 Processing solution (CP2) was used after pretreatment with DI water. Either of two commercial holding solutions, CP2 or Floralife Professional (FLP), similarly extended the vase life of linaria. The use of FLP or CP2 improved consumer vase life of dahlia, lupine, and poppy compared with DI water. Dahlia, trachelium, and zinnia flowers could not be cold stored at 2 °C. Lupine and poppy could be stored at 2 °C wet or dry for 2 weeks. Linaria and rudbeckia could be cold stored for 3 weeks. Lupine and trachelium were susceptible to 1 μL·L−1 exogenous ethylene, which induced floret abscission in lupine and stopped floret opening in trachelium. 1-Methylcyclopropene and silver thiosulfate similarly suppressed the ethylene effect. Cut linaria, zinnia, dahlia, rudbeckia, and poppy flowers were unaffected by exogenous ethylene.

Free access

Each year a wide variety of new cultivars and species are evaluated in the National Cut Flower Trial Programs administered by North Carolina State University and the Association of Specialty Cut Flower Growers. Stems of promising and productive cultivars from the National Trial Program were pretreated with either a commercial hydrating solution or deionized (DI) water and placed in either a commercial holding solution or DI water. Over 8 years, the vase life of 121 cultivars representing 47 cut flower genera was determined. Although there was cultivar variation within each genus, patterns of postharvest responses have emerged. The largest category, with 53 cultivars, was one in which a holding preservative increased vase life of the following genera and species: acidanthera (Gladiolus murielae), basil (Ocimum basilicum), bee balm (Monarda hybrid), black-eyed susan (Rudbeckia hybrids), campanula (Campanula species), celosia (Celosia argentea), common ninebark (Physocarpus opulifolius), coneflower (Echinacea purpurea), coral bells (Heuchera hybrids), feverfew (Tanacetum parthenium), foxglove (Digitalis purpurea), ladybells (Adenophora hybrid), lisianthus (Eustoma grandiflorum), lobelia (Lobelia hybrids), obedient plant (Physostegia virginiana), ornamental pepper (Capsicum annuum), pincushion flower (Scabiosa atropurpurea), pinkflower (Indigofera amblyantha), seven-sons flower (Heptacodium miconioides), shasta daisy (Leucanthemum superbum), sunflower (Helianthus annuus), snapdragon (Antirrhinum majus), sweet william (Dianthus hybrids), trachelium (Trachelium caeruleum), and zinnia (Zinnia elegans). Hydrating preservatives increased the vase life of four basils, coral bells, and sunflower cultivars. The combined use of hydrator and holding preservatives increased the vase life of three black-eyed susan, seven-sons flower, and sunflower cultivars. Holding preservatives reduced the vase life of 14 cultivars of the following genera and species: ageratum (Ageratum houstonianum), false queen anne's lace (Ammi species), knotweed (Persicaria hybrid), lisianthus, pineapple lily (Eucomis comosa), sneezeweed (Helenium autumnale), yarrow (Achillea millifolium), and zinnia. Hydrating preservatives reduced the vase life of 18 cultivars of the following genera and species: feverfew, lisianthus, ornamental pepper, pineapple lily, seven-sons flower, shasta daisy, sneezeweed, sweet william, sunflower, trachelium, yarrow, and zinnia. The combined use of hydrating and holding preservatives reduced the vase life of 12 cultivars in the following genera and species: false queen anne's lace, feverfew, pincushion flower, sneezeweed, sunflower, trachelium, yarrow, and zinnia. Data for the remaining 50 cultivars were not significant among the treatments; these genera and species included beautyberry (Callicarpa americana), black-eyed susan, blue mist (Caryopteris clandonensis), calendula (Calendula officinalis), campanula, cleome (Cleome hasserliana), common ninebark, dahlia (Dahlia hybrids), delphinium (Delphinium hybrids), flowering peach (Prunus persica forma versicolor), heliopsis (Heliopsis helianthoides), hemp agrimony (Eupatorium cannabinum), himalayan honeysuckle (Leycesteria formosa), hydrangea (Hydrangea paniculata), larkspur (Consolida hybrids), lily of the nile (Agapanthus hybrid), lisianthus, lobelia, ornamental pepper, pineapple lily, scented geranium (Pelargonium hybrid), sunflower, sweet william, and zinnia.

Free access