Search Results
Golf facilities require a large area and consume energy to operate. As such, golf facilities have the potential to influence ecosystems and contribute to national and regional energy demands. The objective of this study was to document the land-use and energy practices of US golf facilities in 2021 and to determine if changes have occurred since 2005. A survey was distributed via e-mail to 13,938 US golf facilities, with 1861 responding. From 2005 to 2021, the projected acres of maintained turfgrass declined by 14.2%, whereas the median maintained turfgrass acreage declined by 3.0% indicating the decline in projected acres was likely a result of facility closures. In 2021, water features, turfgrass, and natural areas accounted for 92% of the total projected facility acres. More golf facilities used cleaner energy sources, such as natural gas and solar-electric, and fewer golf facilities used gasoline and diesel in 2021 than in 2005. The percentage of golf facilities at which behavioral changes were implemented to decrease energy use declined but design changes increased from 2005 to 2021. Golf facilities became more land and energy efficient from 2005 to 2021 by reducing the acreage of maintained turfgrass and increasing the use of clean energy sources, but room for improvement still exists in human behaviors that affect energy use.
Cultivar and planting site are two factors that often receive minimal attention, but can have a significant impact on the quality of apple (Malus ×domestica) produced. A regional project, NE-183 The Multidisciplinary Evaluation of New Apple Cultivars, was initiated in 1995 to systematically evaluate 20 newer apple cultivars on Malling.9 (M.9) rootstock across 19 sites in North America. This paper describes the effect of cultivar and site on fruit quality and sensory attributes at a number of the planting sites for the 1998 through 2000 growing seasons. Fruit quality attributes measured included fruit weight, length: diameter ratio, soluble solids concentration (SSC), titratable acidity (TA), flesh firmness, red overcolor, and russet. Fruit sensory characteristics rated included crispness, sweetness, and juiciness, based on a unipolar intensity scale (where 1 = least and 5 = most), and acidity, flavor, attractiveness, and desirability based on a bipolar hedonic scale (where 1 = dislike and 5 = like extremely). All fruit quality and sensory variables measured were affected by cultivar. The two-way interaction of cultivar and planting site was significant for all response variables except SSC, TA, russet, crispness, and sweetness ratings. The SSC: TA ratio was strongly correlated with sweetness and acidity sensory rating, but was weakly correlated with flavor rating. The results demonstrate that no one cultivar is ideally suited for all planting sites and no planting site is ideal for maximizing the quality of all apple cultivars.