Search Results

You are looking at 31 - 39 of 39 items for

  • Author or Editor: Gregory A. Lang x
Clear All Modify Search
Free access

Don C. Elfving, Gregory A. Lang and Dwayne B. Visser

Prohexadione-Ca (P-Ca) and ethephon (ETH) were evaluated as potential inhibitors of growth and promoters of early flowering for high density orchard management of sweet cherry (Prunus avium L.) trees on vigorous rootstocks. Single applications (P-Ca at 125 to 250 mg·L-1 active ingredient (a.i.) or ETH at 175 to 200 mg·L-1 a.i.) to young, nonfruiting sweet cherry trees produced short-term, generally transient reductions in terminal shoot elongation, and did not stimulate flower bud formation. Tank-mix applications (P-Ca + ETH) usually produced a stronger, possibly synergistic, reduction in shoot growth rate. Single tank-mix applications either increased subsequent flower bud density on previous season shoots or had no effect; when a second application was made three weeks later to the same trees, subsequent flower bud density on previous season shoots and spurs on older wood increased ≈3-fold over untreated trees. Yield efficiency (g·cm2 trunk cross-sectional area) also increased nearly 3-fold. Chemical names used: (2-chloroethyl) phosphonic acid (ethephon); calcium 3-oxido-4-propionyl-5-oxo-3-cyclohexene carboxylate (prohexadione-Ca); polyoxyethylene polypropoxypropanol, dihydroxypropane, 2-butoxyethanol (Regulaid); aliphatic polycarboxylate, calcium (Tri-Fol).

Free access

Charlotte M. Guimond, Preston K. Andrews and Gregory A. Lang

Flower initiation and development in `Bing' sweet cherry (Prunus avium L.) was examined using scanning electron microscopy. There was a 1- to 2-week difference in the time of initiation of flower buds on summer pruned current season shoots (P) compared to buds borne on unpruned shoots (U) or spurs (S). By late July, this difference was obvious in morphological development. The P buds had already formed floral primordia, while the S and U buds showed little differentiation in the meristem until early August. In general, buds from unpruned shoots were similar developmentally to spur buds. By late August, primordial differentiation was similar in the buds from all the wood types; however, buds from pruned shoots were significantly larger (838 μm) than buds from spurs (535 μm) and unpruned shoots (663 μm). Early summer pruning may shift allocation of resources from terminal shoot elongation to reproductive meristem development at the base of current season shoots. The similarity in reproductive bud development between spurs and unpruned shoots, given the difference in active terminal growth, might suggest that developmental resources are inherently more limiting in reproductive buds on spurs.

Free access

Kay P. Gersch, Carl E. Motsenbocker and Gregory A. Lang

Of eight genotypes of cayenne pepper (Capsicum annuum L.) examined, two were identified that differ significantly in ease of fruit detachment force. Greenhouse and field-grown plants of these genotypes, Cajun 1-9027 and Cap-9004, were investigated for differences in cell type and organization at the fruit and receptacle junction. Scanning electron microscopy revealed that mature Cajun 1-9027 fruit that did not separate exhibited a distinct region of sclerified cells that extended from the periphery of the fruit into the receptacle for 25 to 30 cell layers. In contrast, mature fruit of the more readily detachable Cap-9004 had 10 to 15 layers of sclerified cells at the region of detachment. Histochemical and stereological techniques indicated that Cajun 1-9027 had a greater volume of sclereids than Cap-9004. Cajun 1-9027 exhibited smaller cortical cells in the detachment region than Cap-9004. Neither genotype exhibited a well-defined abscission zone at maturity in the detachment region. The presence of more sclerified cells and increased lignification in Cajun 1-9027 compared to Cap-9004 probably contributed to the differences in ease of detachment between the two genotypes.

Free access

Robyn McConchie, N. Suzanne Lang, Alan R. Lax and Gregory A. Lang

Premature leaf blackening in Protea severely reduces vase life and market value. The current hypothesis suggests that leaf blackening is induced by a sequence of events related to metabolic reactions associated with senescence, beginning with total depletion of leaf carbohydrates. It is thought that this carbohydrate depletion may induce hydrolysis of intercellular membranes to supply respiratory substrate, and subsequently allow vacuole-sequestered phenols to be oxidized by polyphenol oxidase (PPO) and peroxidase (POD) (Whitehead and de Swardt, 1982). To more thoroughly examine this hypothesis, leaf carbohydrate depletion and the activities of PPO and POD in cut flower Protea susannae × P. compacta stems held under light and dark conditions were examined in relationship to postharvest leaf blackening. Leaf blackening proceeded rapidly on dark-held stems, approaching 100% by day 8, and was temporally coincident with a rapid decline in starch concentration. Blackening of leaves on light-held stems did not occur until after day 7, and a higher concentration of starch was maintained earlier in the postharvest period for stems held in light than those held in dark. A large concentration of the sugar alcohol, polygalatol, was maintained in dark- and light-held stems over the postharvest period, suggesting that it is not involved in growth or maintenance metabolism. Polyphenol oxidase activity in light- and dark-held stems was not related to appearance of blackening symptoms. Activity of PPO at pH 7.2 in light-held stems resulted in a 10-fold increase over the 8-day period. Activity in dark-held stems increased initially, but declined at the onset of leaf blackening. There was no significant difference in POD activity for dark- or light-held stems during the postharvest period. Total chlorophyll and protein concentrations did not decline over the 8-day period or differ between light- and dark-held stems. Total phenolics in the dark-held stems increased to concentrations ≈30% higher than light-held stems. Consequently, the lack of association between membrane collapse, leaf senescence, or activities of oxidative enzymes (PPO or POD) with leaf blackening does not support the hypothesis currently accepted by many Protea researchers. An alternative scenario may be that the rapid rate of leaf starch hydrolysis imposes an osmotic stress resulting in cleavage of glycosylated phenolic compounds to release glucose for carbohydrate metabolism and coincidentally increase the pool of free phenolics available for nonenzymatic oxidation. The physiology of such a carbohydrate-related cellular stress and its manifestation in cellular blackening remains to be elucidated.

Free access

Nnadozie C. Oraguzie, D. Ophardt, Matthew D. Whiting, Gregory A. Lang and Lynn E. Long

Free access

Nnadozie C. Oraguzie, David Ophardt, Matthew D. Whiting, Gregory A. Lang and Lynn E. Long

Free access

James W. Olmstead, Matthew D. Whiting, David Ophardt, Nnadozie C. Oraguzie and Gregory A. Lang

Free access

James W. Olmstead, Matthew D. Whiting, David Ophardt, Nnadozie C. Oraguzie and Gregory A. Lang

Free access

Ksenija Gasic, John E. Preece and David Karp