Search Results

You are looking at 31 - 34 of 34 items for

  • Author or Editor: Edward Bush x
Clear All Modify Search

Louisiana requires schools to address designated educational standards at specific grade levels. Science is a challenging subject at the middle school level. A hands-on approach has been proven more effective than traditional classroom teaching. A program was developed by a cooperative effort between Louisiana Sea Grant and the LSU AgCenter Dept. of Horticulture within the Coastal Roots Nursery Program. Eight lesson plans were designed to meet 16 standards and 275 students in four schools. Pre- and post-test were given to each grade in addition to the Children's Attitude Toward Environment Scale (CATES). Additional pre- and post-test were given to classes not participating in the program. The evaluations tested both short and long term memory on material contained in the lesson plans. The data was analyzed by school, sex, and grade level.

Free access

Phosphorus (P) fertilizers with high water-solubility are often applied in excessive amounts to porous horticultural substrates to produce high-quality plants. As a result, high P losses during containerized plant production have presented an environmental challenge to responsible growers. Poultry litter ash (PLA), a byproduct of bioenergy production, contains P concentrations comparable to conventional P fertilizers but is characterized as having lower water-solubility. Therefore, a series of experiments were conducted to characterize effects of PLA on container-plant growth and P leaching. PLA was compared with superphosphate (SP), a highly water-soluble P source, in ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 (SP:PLA) in the production of Lantana camara L. ‘New Gold’. In 2011, lantana fertilized with higher ratios of PLA exhibited slower growth with lower shoot and root biomasses compared with 100% SP-fertilized lantana. However, in 2012, differences in fertilizer treatments lessened, with 100% PLA-fertilized lantana exhibiting 14% less shoot biomass and no differences in root biomass compared with 100% SP-fertilized lantana. Measurement of shoot:root biomass, a common indicator of P deficiency, was not different between any P treatments in 2011 or 2012. This indicates root growth was most likely the driving factor in P-treatment effects on shoot biomass in each year of the experiment. During a postproduction field trial, no differences in growth or biomass were observed between lantana previously fertilized with P, regardless of source. However, application of PLA as the single P source reduced dissolved reactive P (DRP) concentrations in leachate >90% and total P (TP) mass losses 69% compared with 100% SP-fertilized lantana during container production, with P treatments reducing DRP and TP losses as PLA ratios increased. Therefore, the benefit of P-loss reduction during container production achieved through PLA application may warrant the acceptance of slightly smaller plants or extending production cycles.

Free access

Irrigation management is essential in producing quality woody ornamentals and minimizing off-site runoff. The closed-capture effluent device provided an inexpensive method of monitoring effluent in large containers throughout the year with minimal effort. Daily irrigation requirements for `Little Gem' southern magnolia (Magnolia grandifolia) were established throughout an entire growing season. The maximum daily water requirement was approximately 3 gal (11.4 L).

Full access

Growers rely on soilless substrates to provide sufficient water and nutrients to containerized crops. Traditional bark-based substrates are engineered to have relatively low water-holding capabilities, which can lead to nonuniform rewetting patterns and inefficient usage of water resources. Engineering substrates to redistribute water dynamics and maximize aeration within the container may improve water resource efficiencies. The goal of this study was to evaluate whether more efficient irrigation schedules can be used when stratifying unique substrates within a container for added crop water and nutrient efficiency. Loropetalum chinense ‘Ruby’ liners were planted and grown in a conventional pine bark substrate or one of three stratified substrate treatments, including a bark:peat, bark:coir, or fine bark layered on top of a coarse bark. The crops were grown under four different irrigation schedules, including single daily application, single application at deficit levels, cyclic application, or cyclic at deficit schedules. Stratified substrates improved crop growth, quality, and yield when compared with plants grown in conventional bark in the single application irrigation treatment. Measured at final harvest, substrates positively influenced plant growth index (P < 0.0001), whereas irrigation scheduling alone had no effect (P = 0.6321). There was a strong interaction between substrate and irrigation schedules on Δ growth index (P = 0.0141). There were strong substrate effects on shoot dry weight (P = 0.0060), root dry weight (P = 0.0342), and growth index (P = 0.0040). The stratified bark:coir treatment outgrew all other substrate treatments. In addition, within all irrigation treatments, plants grown with the stratified bark:coir substrate had the highest survival ratings among the other substrate treatments, whereas the conventional bark had the lowest survival rates. Substrate and irrigation had an effect on nitrogen and potassium leachate concentrations levels (P = 0.0107 and P = 0.0004, respectively). Evaluation of microbial communities showed that substrate (P = 0.0010) and the stratified layer (P = 0.0010) had strong influences on the type of community present and the relative abundance in the treatments used herein this study. Specifically, within cyclic scheduling, bark:peat actinomycete populations were significantly greater than other substrate treatments. Furthermore, under deficit irrigation, stratified substrate systems were able to mitigate crop water stress. The results indicate that when crops such as the Loropetalum are grown in the stratified system, crop growth can be sustained when drought conditions are present. This is possible by providing adequate water availability even under low water inputs until subsequent irrigations during the fragile establishment period, when compared with using traditional bark-based substrates.

Open Access