Search Results

You are looking at 31 - 40 of 44 items for

  • Author or Editor: Dean A. Kopsell x
Clear All Modify Search
Free access

Dean A. Kopsell, Carl E. Sams, Dennis E. Deyton, Kristin R. Abney, David E. Kopsell and Larry Robertson

Members of the Allium genus are consumed for their culinary flavor attributes, but also contain antioxidant and anticarcinogenic phytochemicals. Bunching onions (Allium fistulosum L.) are commonly used in Asian cuisine, in which both leaves and pseudostems are consumed. Carotenoids and chlorophylls are important classes of phytochemicals gaining attention for their health attributes. The goal of our study was to characterize carotenoids and chlorophylls and identify possible genetic and environmental influences on carotenoid concentrations among A. fistulosum accessions. Twelve USDA-ARS accessions were field grown in Knoxville, TN, and Geneva, NY, during the summer of 2007. After harvest, carotenoid and chlorophyll pigments were evaluated in leaf and pseudostem tissues using high-performance liquid chromatography. We were able to identify the presence of antheraxanthin, β-carotene, chlorophyll a and b, lutein, neoxanthin, and violaxanthin in leaf tissues; however, pigments were not found in pseudostem tissues. Carotenoid and chlorophyll concentrations did not differ among accessions or between locations. It is possible that accessions evaluated in this study were a narrow genetic base or were selected based on flavor attributes and not leaf tissue pigmentation.

Free access

Mark G. Lefsrud, John C. Sorochan, Dean A. Kopsell and J. Scott McElroy

Heat-tolerant bluegrass varieties were developed to resist dormancy and retain pigmentation during heat stress events. The objective of this study was to investigate the influence of grass species, nitrogen (N) fertilization, and seasonality on the accumulation patterns of lutein, β-carotene, and chlorophyll a and b in the leaf tissues of turfgrass. The heat-tolerant bluegrass cultivars Dura Blue and Thermal Blue (Poa pratensis L. × Poa arachnifera Torr.), Apollo kentucky bluegrass (Poa pratensis L.), and Kentucky 31 tall fescue (Festuca arundinacea Schreb.) were compared for the accumulation of plant pigments. Evaluations were conducted over 2 consecutive years (Years 4 and 5 after establishment) during two different seasons (spring and summer) and under varying N fertilization. Fertilizer applications of 5, 14, and 27 g N/m2/year resulted in a significant positive correlation for the accumulation of leaf blade lutein and chlorophyll a and b, but not for β-carotene. The accumulation of the four measured plant pigments among the grasses was significantly different with ‘Apollo’ having the largest concentration of pigments followed by ‘Dura Blue’, ‘Thermal Blue’, and finally ‘Kentucky 31’. Specifically, when comparing the cultivars Apollo and Kentucky 31, the pigment levels decreased 27%, 26%, 26%, and 23% for lutein, β-carotene, and chlorophyll a and b, respectively. The interesting observation of the analysis of the grass pigment concentrations was that the least reported heat-tolerant cultivar in our study (‘Apollo’) had the largest measured pigment concentrations.

Free access

Dean A. Kopsell, Carl E. Sams, T. Casey Barickman and Robert C. Morrow

Previous research in our group demonstrated that short-duration exposure to narrow-band blue wavelengths of light can improve the nutritional quality of sprouting broccoli (Brassica oleacea var. italica) microgreens. The objective of this study was to measure the impact of different percentages of blue light on the concentrations of nutritional quality parameters of sprouting broccoli microgreens and to compare incandescent/fluorescent light with light-emitting diodes (LEDs). Microgreen seeds were cultured hydroponically on growing pads under light treatments of: 1) fluorescent/incandescent light; 2) 5% blue (442 to 452 nm)/95% red (622 to 632 nm); 3) 5% blue/85% red/10% green (525 to 535 nm); 4) 20% blue/80% red; and 5) 20% blue/70% red/10% green in controlled environments. Microgreens were grown at an air temperature of 24 °C and a 16-hour photoperiod using a light intensity of 250 μmol·m−2·s−1 for all light treatments. On emergence of the first true leaf, a nutrient solution of 42 mg·L−1 nitrogen (N) (20% Hoagland’s #2 solution) was used to submerge the growing pads. Microgreens were harvested after 20 days under the light treatments and shoot tissues were processed and measured for nutritionally important shoot pigments, glucosinolates, and mineral nutrients. Microgreens under the fluorescent/incandescent light treatment had significantly lower shoot fresh mass than plants under the 5% blue/95% red, 5% blue/85% red/10% green, and the 20% blue/80% red LED light treatments. The highest concentrations of shoot tissue chlorophyll, β-carotene, lutein, total carotenoids, calcium (Ca), magnesium (Mg), phosphorus (P), sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), zinc (Zn), glucoiberin, glucoraphanin, 4-methoxyglucobrassicin, and neoglucobrassicin were found in microgreens grown under the 20% blue/80% red light treatment. In general, the fluorescent/incandescent light treatment resulted in significantly lower concentrations of most metabolites measured in the sprouting broccoli tissue. Results from the current study clearly support data from many previous reports that describe stimulation of primary and secondary metabolite biosynthesis by exposure to blue light wavelengths from LEDs.

Free access

Carl E. Sams, Dilip R. Panthee, Craig S. Charron, Dean A. Kopsell and Joshua S. Yuan

Glucosinolates (GSs) and carotenoids are important plant secondary metabolites present in several plant species, including arabidopsis (Arabidopsis thaliana). Although genotypic and environmental regulation of GSs and carotenoid compounds has been reported, few studies present data on their regulation at the molecular level. Therefore, the objective of this study was to explore differential expression of genes associated with GSs and carotenoids in arabidopsis in response to selenium fertilization, shown previously to impact accumulations of both classes of metabolites in Brassica species. Arabidopsis was grown under 0.0 or 10.0 μM Na2SeO4 in hydroponic culture. Shoot and root tissue samples were collected before anthesis to measure GSs and carotenoid compounds and conduct gene expression analysis. Gene expression was determined using arabidopsis oligonucleotide chips containing more than 31,000 genes. There were 1274 differentially expressed genes in response to selenium (Se), of which 516 genes were upregulated. Ontology analysis partitioned differentially expressed genes into 20 classes. Biosynthesis pathway analysis using AraCyc revealed that four GSs, one carotenoid, and one chlorophyll biosynthesis pathways were invoked by the differentially expressed genes. Involvement of the same gene in more than one biosynthesis pathway indicated that the same enzyme may be involved in multiple GS biosynthesis pathways. The decrease in carotenoid biosynthesis under Se treatment occurred through the downregulation of phytoene synthase at the beginning of the carotenoid biosynthesis pathway. These findings may be useful to modify the GS and carotenoid levels in arabidopsis and may lead to modification in agriculturally important plant species.

Free access

Ron M. Wik, Paul. R. Fisher, Dean A. Kopsell and William R. Argo

Two experiments were completed to determine whether the form and concentration of iron (Fe) affected Fe toxicity in the Fe-efficient species Pelargonium ×hortorum `Ringo Deep Scarlet' L.H. Bail. grown at a horticulturally low substrate pH of 4.1 to 4.9 or Fe deficiency in the Fe-inefficient species Calibrachoa ×hybrida `Trailing White' Cerv. grown at a horticulturally high substrate pH of 6.3 to 6.9. Ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA), ferric ethylenediamine tetraacetic acid (Fe-EDTA), and ferrous sulfate heptahydrate (FeSO4·7H2O) were applied at 0.0, 0.5, 1.0, 2.0, or 4.0 mg ·L–1 Fe in the nutrient solution. Pelargonium showed micronutrient toxicity symptoms with all treatments, including the zero Fe control. Contaminant sources of Fe and Mn were found in the peat/perlite medium, fungicide, and lime, which probably contributed to widespread toxicity in Pelargonium. Calibrachoa receiving 0 mg Fe/L exhibited severe Fe deficiency symptoms. Calibrachoa grown with Fe-EDDHA resulted in vigorous growth and dark green foliage, with no difference from 1 to 4 mg·L–1 Fe. Using Fe-EDTA, 4 mg Fe/L was required for acceptable growth of Calibrachoa, and all plants grown with FeSO4 were stunted and chlorotic. Use of Fe-EDDHA in water-soluble fertilizer may increase the upper acceptable limit for media pH in Fe-inefficient species. However, iron and Mn present as contaminants in peat, irrigation water, or other sources can be highly soluble at low pH. Therefore, it is important to maintain a pH above 6 for Fe-efficient species regardless of applied Fe form or concentration, in order to avoid the potential for micronutrient toxicity.

Restricted access

Joshua K. Craver, Joshua R. Gerovac, Roberto G. Lopez and Dean A. Kopsell

Multilayer vertical production systems using sole-source (SS) light-emitting diodes (LEDs) can be an alternative to more traditional methods of microgreens production. One significant benefit of using LEDs is the ability to select light qualities that have beneficial impacts on plant morphology and the synthesis of health-promoting phytochemicals. Therefore, the objective of this study was to quantify the impacts of SS LEDs of different light qualities and intensities on the phytochemical content of brassica (Brassica sp.) microgreens. Specifically, phytochemical measurements included 1) total anthocyanins, 2) total and individual carotenoids, 3) total and individual chlorophylls, and 4) total phenolics. Kohlrabi (Brassica oleracea var. gongylodes), mustard (Brassica juncea ‘Garnet Giant’), and mizuna (Brassica rapa var. japonica) were grown in hydroponic tray systems placed on multilayer shelves in a walk-in growth chamber. A daily light integral (DLI) of 6, 12, or 18 mol·m−2·d−1 was achieved from SS LED arrays with light ratios (percent) of red:blue 87:13 (R87:B13), red:far-red:blue 84:7:9 (R84:FR7:B9), or red:green:blue 74:18:8 (R74:G18:B8) with a total photon flux from 400 to 800 nm of 105, 210, or 315 µmol·m−2·s–1 for 16 hours, respectively. Phytochemical measurements were collected using spectrophotometry and high-performance liquid chromatography (HPLC). Regardless of light quality, total carotenoids were significantly lower under increasing light intensities for mizuna and mustard microgreens. In addition, light quality affected total integrated chlorophyll with higher values observed under the light ratio of R87:B13 compared with R84:FR7:B9 and R74:G18:B8 for kohlrabi and mustard microgreens, respectively. For kohlrabi, with increasing light intensities, the total concentration of anthocyanins was greater compared with those grown under lower light intensities. In addition, for kohlrabi, the light ratios of R87:B13 or R84:FR7:B9 produced significantly higher anthocyanin concentrations compared with the light ratio of R74:G18:B8 under a light intensity of 315 µmol·m−2·s−1. Light quality also influenced the total phenolic concentration of kohlrabi microgreens, with significantly greater levels for the light ratio of R84:FR7:B9 compared with R74:G18:B8 under a light intensity of 105 µmol·m−2·s−1. However, the impact of light intensity on total phenolic concentration of kohlrabi was not significant. The results from this study provide further insight into the selection of light qualities and intensities using SS LEDs to achieve preferred phytochemical content of brassica microgreens.

Free access

Mark Lefsrud, Dean Kopsell, Carl Sams, Jim Wills and A.J. Both

Drying of spinach (Spinacia oleracea L.) and kale (Brassica oleracea L. var. acephala D.C.) is required to determine percentage of dry matter (%DM) and pigment concentration of fresh leaves. ‘Melody’ spinach and ‘Winterbor’ kale were greenhouse-grown in hydroponic nutrient solutions containing 13 or 105 mg·L−1 N. Using vacuum freeze dryers and convection ovens, plant tissues were dried for 120 h at five different temperature treatments: 1) freeze drying at −25 °C; 2) freeze drying at 0 °C; 3) vacuum drying at +25 °C; 4) oven drying at +50 °C; and 5) oven drying at +75 °C. Spinach leaf tissue %DM was affected, but kale %DM was unaffected by drying temperature. Spinach and kale leaf tissue %DM were both affected by N level. The high N spinach decreased from 7.3 to 6.4%DM when drying temperature increased from +25 to +75 °C. The low N spinach decreased from 12.7 to 9.6%DM as the drying temperature increased from −25 to +50 °C. Kale averaged from 14.8%DM for the high N treatment and from 21.8%DM for the low N treatment. However, drying temperature did not have a significant impact on measured %DM in kale. Lutein, β-carotene, and chlorophyll levels for both spinach and kale leaf tissue were affected by drying temperature. Measured concentrations of all pigments decreased over 70% as the drying temperature increased from −25 to 75 °C. The largest pigment fresh and dry weight concentrations for spinach and kale were measured at drying temperatures below +25 °C. The spinach and kale samples dried between −25 and +25 °C were not significantly different from each other in %DM or pigment concentration measured on a dry or fresh weight basis. Thus, drying leaf tissue for accurate pigment analysis requires temperatures below +25 °C using vacuum or freeze drying technology.

Full access

Susannah Amundson, Dennis E. Deyton, Dean A. Kopsell, Walt Hitch, Ann Moore and Carl E. Sams

Plant spacing and production systems are important factors for maximizing production of greenhouse-grown tomatoes (Solanum lycopersicum). Two studies were conducted simultaneously and independently, each in a 33 × 96-ft greenhouse in Fall 2008 and Spring 2009 using perlite soilless bag culture. The purpose of the first study was to evaluate yield and fruit weight of ‘Trust’ tomatoes spaced 12, 16, 20, 24, or 28 inches in-row. The second study was conducted to determine the effect of pruning production systems on yield and fruit weight. The first system is pruning two plants per bag each to a single leader and the second is pruning one plant per bag to double leader. A plant spacing of 28 inches resulted in significantly more fruit per plant than the 12-inch plant spacing. However, yield per area decreased with wider plant spacings. Plants spaced 12 inches apart in-row produced 2.8 and 3.8 lb/ft2 total yield in the fall and spring, respectively, compared with plants spaced 28 inches apart that produced 1.7 and 2.2 lb/ft2 in the fall and spring. Using a production system with one plant per bag pruned to a double leader increased yield by 6.4 lb/plant in the fall and 15.7 lb/plant in the spring. On a per bag basis, pruning two tomato plants to one leader increased total yield by 2.6 lb/bag and was more economical in the fall; whereas, in the spring, the double leader production system did not affect yield but was more economical.

Free access

James T. Brosnan, Dean A. Kopsell, Matthew T. Elmore, Gregory K. Breeden and Gregory R. Armel

Mesotrione, topramezone, and tembotrione are inhibitors of the enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD), which impacts the carotenoid biosynthetic pathway. An experiment was conducted to determine the effects of mesotrione, topramezone, and tembotrione on carotenoid pigment concentrations in common bermudagrass [Cynodon dactylon (L.) Pers.; cv. Riviera] leaf tissues. Bermudagrass plants were treated with three rates of mesotrione (0.28, 0.35, and 0.42 kg·ha−1), topramezone (0.018, 0.025, and 0.038 kg·ha−1), and tembotrione (0.092, 0.184, and 0.276 kg·ha−1). The lowest rate of each herbicide represented the maximum labeled use rate for a single application. Percent visual bleaching was measured at 3, 7, 14, 21, 28, and 35 days after application (DAA). Leaf tissues were sampled on the same dates and assayed for carotenoids. Topramezone and tembotrione bleached bermudagrass leaf tissues to a greater degree than mesotrione. Concomitantly, topramezone and tembotrione also reduced total chlorophyll (chlorophyll a + b), β-carotene, lutein, and total xanthophyll cycle pigment concentrations (zeaxanthin + antheraxanthin + violaxanthin) more than mesotrione. Increases in visual bleaching resulting from application rate were accompanied by linear reductions in lutein, β-carotene, and violaxanthin for all herbicides. Topramezone and tembotrione increased the percentage of zeaxanthin + antheraxanthin in the total xanthophyll pigment pool (ZA/ZAV) 7 days after peak visual bleaching was observed at 14 DAA. Reductions in ZA/ZAV were reported after 21 DAA. This response indicates that sequential applications of topramezone and tembotrione should be applied on 14- to 21-day intervals, because stress induced by these herbicides is greatest at these timings. Increases in photoprotective xanthophyll cycle pigments (ZA/ZAV) at 14 to 21 DAA may be a mechanism allowing bermudagrass to recover from HPPD-inhibiting herbicide injury, because bermudagrass recovered from all treatments by 35 DAA. Data in the current study will allow turf managers to design physiologically validated bermudagrass control programs with HPPD-inhibiting herbicides. Chemical names: mesotrione [2-(4-methysulfonyl-2-nitrobenzoyl)-1,3-cyclohexanedione], tembotrione {2-[2-chloro-4-(methylsulfonyl)-3-[(2,2,2-(trifluoroethoxy)methyl]benzoyl]-1,3-cyclohexanedione}, topramezone {[3-(4,5-dihydro-3-isoxazolyl)-2-methyl-4-(methylsulfonyl)phenyl](5-hydroxy-1-nethyl-1H-pyrazol-4-yl)methanone}.

Free access

Dean A. Kopsell, James T. Brosnan, Gregory R. Armel and J. Scott McElroy

Mesotrione {2-[4-(methylsulfonyl)-2-nitrobensoyl]-1,3-cyclohexanedione} is a herbicide that indirectly inhibits phytoene desaturase in plant tissues, the first step in the carotenoid biosynthesis pathway. The predominant symptom of mesotrione activity is tissue whitening with subsequent plant necrosis. In the current study, ‘Riviera’ bermudagrass [Cynodon dactylon (L.) Pers.] was treated with mesotrione at 0.28 kg·ha−1 or untreated and sampled for tissue pigment concentrations at 0, 3, 7, 14, 21, 28, and 35 days after treatment (DAT). Visual tissue whitening in mesotrione-treated plants reached a maximum of 38% by 14 DAT; however, regreening of discolored tissue was observed by 21 DAT. Phytoene was only detected in mesotrione-treated plants at 3, 7, and 14 DAT. Pigments in treated plants decreased with initial tissue whitening; however, most recovered to untreated levels by 21 DAT. At 35 DAT, chlorophyll a, chlorophyll b, lutein, β-carotene, and zeaxanthin in mesotrione-treated plants had accumulated to levels exceeding untreated control plants. Results demonstrate that although mesotrione initially decreases bermudagrass pigment concentrations, treatment with this herbicide eventually results in higher concentrations of chlorophylls and carotenoids.