Search Results

You are looking at 31 - 40 of 44 items for

  • Author or Editor: David C. Smith x
Clear All Modify Search

Eastern filbert blight is an economically significant disease in European hazelnut (Corylus avellana L.) production in the United States. Since genetic resistance is the only viable disease control strategy to this fungal disease caused by Anisogramma anomala (Peck) E. Müller, greenhouse and field screening of germplasm was undertaken to study the inheritance from known resistant sources and to identify new sources for inclusion in the breeding program. We confirmed that `Gasaway' resistance to this disease is conferred by a single dominant gene. No major gen was identified in the field-resistant cultivar Gem. Representatives of six Corylus species were screened to identify new resistant germplasm. Corylus cornuta Marshall var. cornuta, C. cornuta var. californica (A.DC.) Sharp, C. heterophylla Fischer, and C. sieboldiana Blume were highly resistant, as were most C. americana Marshall genotypes and one C. colurna L. clone tested, but C. jacquenontii Decaisne was highly susceptible. In several cases, hybrids of these species with susceptible C. avellana were also resistant. These new sources of resisstance are being incorporated in the resistance breeding effort.

Free access

The hundred-year history of the european hazelnut (Corylus avellana L.) industry in the Pacific northwestern United States is threatened by eastern filbert blight (EFB) caused by the fungus Anisogramma anomala (Peck) E. Müller. Marker-assisted selection has been extensively used for ‘Gasaway’ resistance in the hazelnut breeding program at Oregon State University. Concern over possible breakdown of this single resistance gene provides an incentive to look for new sources of resistance. OSU 759.010, a selection from the Republic of Georgia, has remained free of EFB after inoculations over several years. Random amplified polymorphic DNA (RAPD) markers linked to resistance were identified by screening primers against three resistant seedlings, three susceptible seedlings, and the parents of a segregating seedling population. For the progeny OSU 759.010 × OSU 653.068, 13 linked markers were identified. The markers most closely linked to resistance were 695-1800 on the proximal side and H12-640, 373-700, 349-450, and F08-700 on the distal side. Four of the five markers also segregated in the progeny OSU 759.010 × OSU 665.076, whereas H12-640 was monomorphic. Segregation for disease response in the first population showed a surplus of resistant seedlings, approaching a 3:1 ratio, with closely linked RAPD markers showing similar ratios. In the second population, the observed segregation for disease response and associated markers did not deviate from the expected 1:1 ratio. Based on cosegregation with simple sequence repeat (SSR) markers, resistance from OSU 759.010 was assigned to linkage group 2. Resistance to EFB from ‘Gasaway’ and ‘Ratoli’ was previously mapped to linkage groups 6 and 7, respectively. Therefore, OSU 759.010 provides a novel source of EFB resistance and markers 695-1800, 373-700, 349-450, and F08-700 have potential for use in marker-assisted selection to pyramid EFB resistance alleles.

Free access

Eastern filbert blight (EFB), caused by the fungus Anisogramma anomala (Peck) E. Müller, is an important disease of european hazelnut (Corylus avellana L.) in the Pacific northwestern United States. In 1989, a chance seedling free of EFB was discovered adjacent to a severely diseased orchard near Troutdale, Ore. This selection, subsequently named `Zimmerman', was crossed with three susceptible selections. Based on morphological characters and incompatibility alleles, we speculated that `Zimmerman' (S1 S3) was a hybrid between `Barcelona' (S1 S2) and `Gasaway' (S3 S26). The three seedling populations were inoculated with spores of the pathogen in a greenhouse test and assayed by indirect enzyme-linked immunosorbent assay (ELISA) and by observation of canker incidence. The observed segregation fit a 3 resistant : 1 susceptible ratio in all three progenies, in contrast to the 1 : 1 ratio found when the resistant pollinizer `Gasaway' was crossed to susceptible genotypes. Random amplified polymorphic DNA (RAPD) marker UBC 152800 linked to the resistance gene in `Gasaway' co-segregated with the resistant phenotype in all three populations with 2%, 4%, and 6% recombination, respectively. Seed germination and transplanting records did not provide evidence of selection in favor of resistant seedlings. Pollen germination was 71% in `Gasaway', 29% in `Zimmerman', and 18% in `Barcelona', indicating possible selection at the gametophytic level. Subsequently 16 resistant seedlings of `Zimmerman' were crossed with the highly susceptible selection OSU 313.078. Segregation fit a 3 : 1 ratio in 14 of the 16 progenies, and showed a surplus of resistant seedlings in the other two. None showed a 1 : 1 segregation. Resistance co-segregated with two RAPD markers that flank the `Gasaway' resistance allele. To test allelism of resistance from `Gasaway' and `Zimmerman', VR 6-28 with resistance from `Gasaway' was crossed with `Zimmerman'. Eight resistant selections from this progeny were crossed with OSU 313.078. Five of the eight progenies segregated 3 : 1, two progenies segregated 1 : 1, and OSU 313.078 × OSU 720.056 gave only resistant offspring. The ratios indicate that OSU 720.056 is homozygous resistant and that `Zimmerman' and `Gasaway' share a common resistance allele. Reciprocal translocations have been reported in hazelnut cultivars, including `Barcelona', the leading cultivar in Oregon. `Zimmerman' appears to be a hybrid of `Barcelona' and `Gasaway', but because of cytogenetic abnormalities, `Zimmerman' may have inherited two copies of the chromosome region that contain the resistance locus and flanking RAPD markers. If the region containing the resistance were attached to two independent centromeres, a 3 : 1 segregation ratio for disease response and flanking markers would be expected, and we propose this as the most likely explanation. Resistance from `Gasaway' and `Zimmerman' has been called “immunity” or “complete resistance.” However, we noted a few seedlings with small cankers, nearly all of which lacked sporulating stromata. Flanking RAPD markers indicate that the resistance allele is present in these seedlings. Although not “immune” or “completely resistant,” `Gasaway' and `Zimmerman' transmit a very high level of resistance.

Free access

European hazelnut (Corylus avellana L.) is a significant crop in Oregon, where 99% of United States hazelnuts are produced. Eastern filbert blight (EFB) caused by Anisogramma anomala (Peck) E. Müller is an important disease that infects the trees, reduces yield, and causes premature death. Managing the disease through cultural methods and fungicide applications is laborious and expensive, and genetic host resistance is considered the most viable option for control. Genetic resistance from ‘Gasaway’ has been used to develop resistant cultivars including Yamhill and Jefferson, but concern about the durability of this single resistance gene stimulated a search for additional sources of resistance. This study used three recently identified sources of EFB resistance: ‘Culplà’ from Spain, ‘Crvenje’ from Serbia, and OSU 495.072 from southern Russia. RAPD markers linked to resistance from ‘Gasaway’ were absent in all three accessions. Disease response was noted in segregating progenies following greenhouse or structure inoculation, and the resistance loci were mapped using microsatellite markers. In only four of the nine progenies did segregation for disease response fit the ratio of 1 resistant:1 susceptible expected for a single locus, a heterozygous resistant parent, and a dominant allele for resistance. Three progenies showed an excess of resistant seedlings while two showed a deficiency of resistant seedlings. The reciprocal translocations reported in several leading hazelnut cultivars may be present in the parents of the studied progenies, and affecting the segregation ratios. Microsatellite marker A614, previously mapped to linkage group (LG) 6, was closely linked to resistance from all three sources. Maps were constructed for LG6 for each resistant parent using microsatellite markers. The three resistance loci mapped to the same region on LG6 where resistance from ‘Gasaway’ and OSU 408.040 are located. The resistance alleles in all five accessions may be the same, or more likely are a cluster of different resistance genes in the same region. Markers LG628, LG610, and LG696 will be useful to breed new hazelnut cultivars with resistance from Culplà, Crvenje, and OSU 495.072.

Free access

A rapid and reliable assay for screening European hazelnut (Corylus avellana L.) genotypes for quantitative resistance to eastern filbert blight [Anisogramma anomala (Peck) E. Müller] was tested by comparing two methods using the same clones. In the first assay, disease spread was followed for five consecutive years (1992-96) in a field plot planted in 1990. Measured responses included disease incidence (the presence or absence of cankers) and total canker length, quantified as the length of perennially expanding cankers. The second assay consisted of annually exposing replicated sets of 2-year-old, potted trees to artificially high doses of pathogen inoculum and measuring incidence and canker lengths at the end of the next growing season. The potted trees were exposed to inoculum in 1990, 1992, 1993, and 1994. Compared to the field plot, disease incidence and total canker length were higher in all the potted-tree experiments. Nonetheless, disease responses of individual clones in the two screening methods were significantly correlated in some contrasts (rs = 0.97 between 1996 field and 1995 potted trees). However, for a few clones (`Camponica', `Tombul Ghiaghli', and `Tonda di Giffoni'), disease developed slowly in the field plot, but disease incidence on these clones averaged > 30% in most of the potted-tree studies. Disease responses also were significantly correlated among some of the potted-tree experiments (rs = 0.72 for the comparison of 1994 to 1995). Highly susceptible and highly resistant hazelnut clones were identified by both methods. However, the field plot method was superior to the potted-tree method for distinguishing among moderately resistant clones. `Bulgaria XI-8', `Gem', `Camponica', `Tombul Ghiaghli', and `Tonda di Giffoni' were identified as promising sources of quantitative resistance to eastern filbert blight.

Free access