Search Results

You are looking at 31 - 40 of 66 items for

  • Author or Editor: D. Scott NeSmith x
Clear All Modify Search

`Tifblue' and `Brightwell' rabbiteye blueberries (Vaccinium ashei Reade) were planted in 1992 in a tall fescue (Festuca arundinacea Schreb.) sod. Vegetation-free areas of various sizes were maintained around plants to determine the area's influence on establishment and growth of young plants. Vegetation-free circles 0 (control), 0.6, 0.9, and 1.5 m in diameter were maintained from 1992 to 1994 by a combination of commercially recommended herbicides and hand-weeding. The treatments resulted in vegetation-free areas of 0, 0.3, 0.6, and 1.8 m2. Fall growth index values (derived from canopy height and width measurements) increased with size of vegetation-free area in each of the three years. The response was positive linear and negative quadratic, with little difference between the 0.6- and 1.8-m2 vegetation-free areas. Average shoot length in Fall 1992 showed a response similar to that of the growth index; total shoot count per plant was not affected by the treatments. Percent fruit set was not influenced by treatments; however, the number of flower buds per plant in Spring 1994 was correlated positively with size of vegetation-free area. The cultivars responded similarly. Thus, vegetation control seems to be important in establishing young rabbiteye blueberry plants, with the optimum vegetation-free area between 0.6 and 1.8 m2 during the first 2 to 3 years after planting.

Free access

Transplants for both vegetable and floral crops are produced in a number of various sized containers or cells. Varying container size alters the rooting volume of the plants, which can greatly affect plant growth. Container size is important to transplant producers as they seek to optimize production space. Transplant consumers are interested in container size as it relates to optimum post-transplant performance. The following is a comprehensive review of literature on container size, root restriction, and plant growth, along with suggestions for future research and concern.

Full access

Age and cell size can have various effects on subsequent transplant production. The interaction of the two have not been studied in triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Seedless watermelon production is costly due to high seed prices, therefore it is necessary to optimize transplant performance in the field, and it is often thought that triploid watermelons are less hardy than their diploid counterparts. A 3 × 3 factorial design was established for 2 years to determine the effects of cell sizes 1.5, 3.4, and 7.9 inch3 (25, 56, and 130 cm3) and transplant age (4, 6, and 8 weeks) on the triploid watermelon `Genesis'. The diploid cultivar `Ferrari' was also planted for comparison. Seedling survival was affected by transplant age in 1997, and by cell size in 1998. Early main vine growth showed significant interaction between transplant age and cell size, with older transplants grown in the largest cells producing the longest vines. Early yield of 6-week-old transplants of `Genesis' was higher than 4- or 8-week-old transplants in 1997. Eight-week-old transplants of `Ferrari' outperformed younger transplants in 1997 and 1998. Results show that `Genesis' triploid watermelon transplants could be handled similarly to the diploid `Ferrari' without consequence.

Full access

The effects of flower bud removal treatments on growth of young rabbiteye (Vaccinium ashei Reade) and southern highbush (V. corymbosum hybrids) blueberry plants were evaluated. Treatments consisted of pruning, hand stripping, and hydrogen cyanamide applications. The growth index of rabbiteye plants after the first spring growth cycle was unaffected by any of the flower bud removal treatments. However, the effects of flower bud thinning were cultivar specific for southern highbush blueberry plants. ‘Misty’ plants showed increases in total plant dry weight and in root, leaf, and stem dry weights from hand thinning and hydrogen cyanamide sprays. Conversely, ‘Santa Fe’ showed no increased growth response from any of the flower bud removal treatments. Flower bud mortality increased as hydrogen cyanamide spray concentration increased and was greater when applications were delayed so that flower buds were more advanced. Hydrogen cyanamide may have potential as an alternative to labor-intense flower bud removal practices such as hand stripping or pruning on young blueberry plants during establishment.

Free access

Seeds of triploid watermelons [Citrullus lanatus (Thunb.) Matsum & Nakai] often germinate poorly, which prevents adequate stand establishment in both field and greenhouse environments. Methods of improving germination and emergence of these expensive seeds would reduce overall risk to growers, thus increasing the crop's market prominence. Seeds of `Genesis' triploid watermelon were subjected to three treatments: 1) seedcoat removal; 2) clipping the seedcoat opposite the radicle end; or 3) no seedcoat alteration; and were germinated on agar in the presence of a 0%, 1%, 2%, 4%, or 8% aqueous H2O2 at constant 28 °C in the dark. Seedcoat removal, clipping, and all levels of H2O2 increased final germination percentages relative to the control (no seedcoat alteration, no H2O2) by as much as 70%. Hydrogen peroxide levels >2% resulted in severe injury to germinating seeds. These findings suggest that germination barriers of triploid watermelon are seedcoat related, and that seedcoat alteration and H2O2 can overcome these barriers.

Free access

Production of triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] transplants is hindered by low and nonuniform emergence, and seedcoat adherence. Seedcoat adherence leads to weakened and slow-growing plants. High seed costs are prohibitive to many transplant growers. Improvement of emergence would lower financial risks to growers and transplant producers. Mechanical scarification was examined as a means to decrease the impact of both problems. Seeds of `Genesis' triploid watermelon were placed in a cylinder with 100 g of very coarse sand and rotated for 6, 12, 24, and 48 hours at 60 rpm. Nontreated seeds were used as a control. Data were taken daily on emergence and seedcoat adherence. The experiment was repeated at three temperature regimes. No significant differences were observed in seedcoat adherence. Scarification, however, did significantly improve emergence under test conditions.

Free access

Greenhouse and field experiments were conducted to determine the effects of the growth regulator N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) on fruit set, berry size, and yield of southern highbush blueberry (Vaccinium corymbosum hybrids). The experiments were conducted over a period of several years in Georgia and Florida. CPPU sprays were capable of increasing fruit set and berry weight of southern highbush blueberry, although the responses to CPPU treatment were variable and appeared to be influenced by factors such as rate, spray timing, and cultivar. In Florida, high natural fruit set may have prevented increased fruit set from CPPU. A slight delay in berry maturity was noted in several experiments. Spray burn occurred on several occasions and may be related to factors such as cultivar, rate, spray volume, and use of surfactant.

Free access

This study evaluates the effect of irrigation on the profitability of the muscadine grape (Vitis rotundifilia) operation. Data from a 3-year experiment in which muscadine grapes were grown under four irrigation regimes were used to establish the relationship between yields and irrigation. Assuming a muscadine fruit price of $0.50/lb, harvesting costs of $0.21/lb, and irrigation costs of $16.75/acre-inch, the profit-maximizing level of irrigation was estimated to be 13.1 acre-inches for a season, or 7 gal/day per plant. Water requirements for profit maximization are 9% lower than water requirements for yield maximizing. Moreover, it is concluded that the effect of an adequate use of irrigation in the profitability of the muscadine grape operation can be substantial.

Full access

Production of triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] transplants is hindered by poor, inconsistent emergence, and frequent seed coat adherence to cotyledons. Seed coat adherence leads to weakened and slow growing plants. High seed costs, coupled with stand establishment problems, discourages transplant producers from growing this crop. Improvement of triploid watermelon emergence will lessen financial risks to growers and transplant producers and will provide a more reliable production system. Mechanical scarification was evaluated as a means to overcome inconsistent emergence and seed coat adherence. Seeds of `Genesis' triploid watermelon were placed in a cylinder with 100 g of very coarse sand (1.0 to 2.0 mm diameter) and rotated at 60 rpm for 0, 6, 12, 24, and 48 hours in a series of experiments. Number of emerged seed was recorded daily, to obtain emergence dynamics. No significant differences were observed in seed coat adherence among treatments. The longest duration of scarification However, enhanced emergence as compared to the control in three of four experiments. These data support earlier suggestions that a thick or hard seed coat is a factor contributing to poor germination and emergence of triploid watermelons.

Free access