Search Results

You are looking at 31 - 40 of 79 items for

  • Author or Editor: Carl E. Sams x
Clear All Modify Search

Abstract

‘Golden Delicious’ apples (Malus domestica Borkh.) were pressure-infiltrated (68.9 kPa) at two harvest dates with 0%, 1%, 2%, or 4% (w/v) solutions of CaCl2 and stored at 0C for 2, 4, or 6 months followed by 1 week at 20C. Calcium concentrations, axial compression profiles, and Magness-Taylor firmness were measured. Calcium chloride infiltration increased all measures of tissue strength immediately and relative increases persisted during storage. A 1-week difference in harvest date markedly affected Ca uptake and textural responses; however, for both dates, 2% CaCl2 was effective in firming the apples. Apples from the second harvest, which were treated with 2% CaCl2 and stored for 6 months, had textural measurement values equal to or greater than those of comparable apples infiltrated only with water and measured before storage. Calcium chloride at 4% had a greater firming effect, but caused severe surface damage. Differential reponses to CaCl2 levels and storage durations by various textural measurements indicate that supplemental Ca not only increased firmness retention during storage, but also induced patterns of textural change different from those that occurred under the influence of the endogenous Ca alone.

Open Access

Abstract

The capacity of ‘Eldorado’ pears to ripen increased dramatically after 4 weeks of exposure to 0°C and was associated with the synthesis of ethylene by pear tissue. Endogenous levels of ACC and internal ethylene were low after harvest, but increased rapidly after 4 weeks at 0°. Exposure to 0° for 4 weeks also resulted in an increase in soluble polyuronide during subsequent ripening at 20°. In contrast, after 9 months at 0°, soluble polyuronide content showed little increase when pears were transferred to 20°, and fruit failed to soften normally even though ACC content, internal ethylene concentration, ethylene evolution, and respiration remained relatively high. The content of arabinose, galactose, and rhamnose residues in cell walls decreased substantially during the ripening period after 4 weeks or longer at 0°. These cell wall neutral sugars decreased during ripening, even after 9 months of storage at 0°, while firmness and soluble polyuronide showed little change after fruit were transferred to 20°. These data indicate that the failure of pears to soften normally at 20° after prolonged storage at 0° is not related to ethylene synthesis or to changes in cell wall noncellulosic neutral sugar content, but is probably associated with mechanisms of polyuronide solubilization. Chemical name used: 1-aminocyclopropane-1-carboxylic acid (ACC).

Open Access

Effects of postharvest pressure infiltration of distilled water, CaCl2 solutions at 0.14 or 0.27 mol·L-1 without and with subsequent fruit coating treatments of preclimacteric `Golden Delicious' [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf. `Golden Delicious'] apples on volatile levels, respiration, ethylene production, and internal atmospheres after storage at 0 °C for 1 to 6 months, and during subsequent shelf life at 20 °C were investigated. Over 30 volatiles were detected, most of the identified volatiles were esters; the rest were alcohols, aldehydes, ethers, a ketone, and a sesquiterpene. Pressure infiltration of water and increasing concentrations of CaCl2 resulted progressively in reduced total volatile levels, respiration, ethylene production, and internal O2 levels and increased CO2 levels in fruit following 2 to 4 months storage in air at 0 °C. Total volatile levels, respiration, ethylene production, and internal atmospheres of CaCl2-treated apples at 0.14 mol·L-1 gradually recovered to nontreated control levels following 2 weeks of shelf life at 20 °C and/or storage at 0 °C in air for more than 4 months. Following the calcium treatments with a shellac- or wax-based coating had similar but stronger and more persistent effects on volatile levels, respiration, ethylene production, and internal atmospheres than those found in fruit treated with CaCl2 alone. Calcium infiltration did not change the composition of volatile compounds found in fruit. Results suggest that pressure infiltration of `Golden Delicious' apples with CaCl2 solutions transiently inhibited volatile levels, respiration, and ethylene production, in part, by forming a more-or-less transient barrier to CO2 and O2 exchange between the fruit tissue and the surrounding atmosphere.

Free access

The effects of postharvest pressure infiltration of calcium chloride (CaCl2) solutions, fruit coatings and shrink-wrap film treatments of apples (Malus domestica Borkh. `Golden Delicious') on peel injury, quality attributes, respiration and internal atmospheres after storage at 0 °C for 2 to 6 months, and during subsequent ripening at 20 °C were investigated. CaCl2 treatments (0.14 to 0.34 mol·L-1) reduced internal and evolved ethylene and softening of fruits, but they also caused distinctive injury to the fruit surface. Following the CaCl2 treatments with a water rinse and a wax- or shellac-based coating or a shrink-wrap film reduced surface injury in fruits treated with 0.24 or 0.34 mol·L-1 solutions of CaCl2 and eliminated injury resulting from a 0.14 mol·L-1 CaCl2 treatment. The fruit coatings delayed ripening; as indicated by better retention of fresh mass, green peel color, titratable acidity and flesh firmness, and the reduced respiration and ethylene production rates that were observed upon transferring the fruits to 20 °C. Sequential treatments with CaCl2 and a shrink-wrap film also reduced fresh mass loss, respiration and ethylene production rates, but had no effect on other quality characteristics. Internal CO2 levels increased and O2 and ethylene levels decreased in surface coated fruits during storage at 0 °C. Coating fruits without the use of CaCl2 also delayed ripening though not as well as that for fruits sequentially treated with CaCl2 and a surface coating.

Free access

Light emitting diodes (LEDs) can produce a wide range of narrowband wavelengths with varying intensities. Previous studies have demonstrated that supplemental blue (B) and red (R) wavelengths from LEDs impact plant development, physiology, and morphology. High-pressure sodium (HPS) lighting systems are commonly used in greenhouse production, but LEDs have gained popularity in recent years because of their improved energy efficiency and spectral control. Research is needed to determine the efficacy of supplementary B and R LED narrowband wavelengths compared with traditional lighting systems like HPS in terms of yield, quality, and energy consumption for a variety of greenhouse-grown high-value specialty crops. The objective of this study was to determine the impact of LED and HPS lighting on greenhouse hydroponic basil (Ocimum basilicum var. ‘Genovese’) biomass production and edible tissue nutrient concentrations across different growing seasons. Basil was chosen because of its high demand and value among restaurants and professional chefs. A total of eight treatments were used: one nonsupplemented natural light (NL) control; one HPS treatment; and six LED treatments (peaked at 447 nm/627 nm, ±20 nm) with progressive B/R ratios (10B/90R; 20B/80R; 30B/70R; 40B/60R; 50B/50R; and 60B/40R). Each supplemented light (SL) treatment provided 8.64 mol·m−2·d−1 (100 µmol·m−2·s−1, 24 h·d−1). The daily light integral (DLI) of the NL control averaged 9.5 mol·m−2·d−1 across all growing seasons (ranging from 4 to 18 mol·m−2·d−1). Relative humidity averaged 50%, with day/night temperatures averaging 27.4 °C/21.8 °C, respectively. LED treatments had the greatest total fresh biomass (FM) and dry biomass (DM) accumulation; biomass for LED treatments were 1.3 times greater on average than HPS, and 2 times greater than the NL control. Biomass partitioning revealed that the LED treatments had more FM and DM for the individual main stem, shoots, and leaves of each plant at varying levels. LED treatments resulted in greater height and main stem diameter. Some essential nutrient concentrations were impacted by SL treatments and growing season. An energy analysis revealed that on average, narrowband B/R LED treatments were 3 times more energy efficient at increasing biomass over HPS. LED treatments reduced SL energy cost per gram FM increase by 95% to 98% when compared with HPS. In addition, the rate of electricity consumption to biomass increase varied across LED treatments, which demonstrates that basil uses different B/R narrowband ratios at varying efficiencies. This experiment shows that spectral quality of both supplemental sources and natural sunlight impacts primary metabolic resource partitioning of basil. The application of LED lighting systems to supplement natural DLI and spectra during unfavorable growing seasons has the potential to increase overall biomass accumulation and nutrient concentrations in a variety of high-value specialty crops.

Open Access

Mature apples (Malus domestica Borkh. cv. Golden Delicious) were immersed for 2 min in 0, 0.14, 0.27, or 0.41 mol·L−1 (0, 2%, 4%, or 6%, respectively) aqueous solutions (w/v) of CaCl2 at 0 or 68.95 kPa, and were stored at 0 °C. Histological samples of peel/cortex were taken at harvest and at four monthly intervals in storage. Paraffin sections were stained with an aqueous mixture of alcian blue 8GX, safaranin 0 and Bismark brown Y, or with the periodic acid-Schiff (PAS) reaction. No histological difference was observed in fruit treated with 2% CaCl2 compared with those pressure-infiltrated with greater amounts of Ca. Fruits pressure-infiltrated with 6% CaCl2 exhibited the greatest amount of flattened epidermal cells and hypodermal cavities. Cuticles were also affected at the higher CaCl2 treatment levels (with regard to staining with Bismark brown), becoming more condensed and uniform. Cuticle and hypodermis were stained differentially with PAS in the 6% CaCl2 treatment. All tissues, including the cuticle, were stained magenta red, indicating a possible chemical alteration of the cuticle and the underlying tissue by Ca.

Free access

Soybean [Glycine max (L.) Merrill] oil was applied to apple trees [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] as a summer spray in six studies to determine if it controls European red mites [Panonychus ulmi (Koch.)], how it affects net CO2 assimilation (A), and if it causes phytotoxicity. Sprays of 0.5%, 1.0%, and 1.5% soybean oil {TNsoy1 formulation [soybean oil premixed with Latron B-1956 (LAT) spreader-sticker at 10 oil: 1 LAT (v/v)]} reduced mite populations by 94%. Sprays of 1% and 2% soybean oil reduced mite populations to three and four mites per leaf, respectively, compared to 25 per leaf on water-sprayed plants. Soybean oil concentrations of 1.0% and 1.5% applied to whole trees reduced A for less than 7 days. Phytotoxicity did not occur when soybean oil was applied with an airblast sprayer at concentrations of 1.0% and 1.5% or with a mist bottle at 2%. Phytotoxicity occurred when soybean oil was applied with a mist bottle at 4% and 6%, which left soybean oil leaf residues of 0.22 to 0.50 mg·cm-2. No phytotoxicity occurred with 4% SunSpray, which resulted in a mean leaf residue of only 0.13 mg·cm-2. Spraying 1% soybean oil tended to give better mite control than 1% SunSpray Ultra-Fine oil, but caused greater oil residues and a greater reduction in A.

Free access

Applications of soybean oil to dormant peach [Prunus persica (L.) Batsch] trees were tested for prebloom thinning of flower buds in five separate experiments. Data were combined from experiments in which 2.5% to 20% emulsified soybean oil was sprayed on `Belle of Georgia' or `Redhaven' trees. The number of dead flower buds was concentration-dependent with maximum bud kill of 53% occurring with application of 12% soybean oil. The amount of thinning was fairly consistent from year to year, ranging from 34% to 51% when 10% soybean oil was applied, but was less consistent when 5% was applied, ranging from 6% to 40%. Overthinning by midwinter applications of soybean oil occurred in one experiment when bud mortality on nontreated trees was 40% due to natural causes. Mild to moderate spring freezes occurred in three experiments, but did not reduce yield more in soybean oil–thinned than in nontreated trees. Flower bud survival was improved when trees were sprayed with 10% or 12% soybean oil prior to a –4 °C spring frost. Applications of soybean oil to dormant trees thinned flower buds, reduced the amount of hand thinning required, and hastened fruit maturity.

Free access

Selenium (Se) is an essential mammalian micronutrient. Adult humans have a daily requirement of 55 to 70 μg/day Se depending on sex and pregnancy/lactation for females. In addition, recent studies have shown health benefits with dietary Se supplementation of 100 to 200 μg/day Se. However, daily intakes in humans greater than 900 μg Se will result in toxicity called selenosis. Although not essential in plant nutrition, some species can bioaccumulate Se. Brassica and Allium species became prime candidates for Se enrichment because of their ability to accumulate and tolerate high concentrations of Se in edible tissues; however, there is now concern that these species are too efficient at selenization and overconsumption of their selenized tissues could result in selenosis. Herbal crop species are consumed regularly in the diet for their culinary flavor attributes. Basil (Ocimum basilicum L.) and cilantro (Coridandrum sativum L.) are not classified as Se accumulators. Therefore, a study was undertaken to determine the potential to selenize basil and cilantro through foliar Se applications to consistently supplement diets with nutritionally beneficial levels of Se. Plants of each species were grown in both growth chamber and field environments and treated with foliar applications (5 mL per plant) of selenate-Se and selenite-Se at concentrations of 0, 2, 4, 8, 16, and 32 mg·L−1 Se. Crops received three separate foliar applications at ≈5-day intervals beginning 24 to 28 days after planting for the growth chamber plants and 50 days after planning for the field environment. Selenium accumulation in both basil and cilantro leaf tissues increased linearly under both selenate-Se (P ≤ 0.001) and selenite-Se (P ≤ 0.001) foliar treatments in growth chamber and field evaluations. Maximum Se leaf tissue concentrations for basil and cilantro ranged from 13 to 55 μg·g−1 Se dry weight. Selenization of basil and cilantro is possible through foliar Se applications, and Se fortification of herbal crops may provide alternative delivery systems in human diets.

Free access

Increasing the calcium content of apples with postharvest CaCl2, treatment has a beneficial effect on physiological and pathological storage problems. The optimal time after harvest during which the fruit can be successfully treated has not been investisated. This study examined the relationship between calcium uptake and the changes in surface cracking in the epicuticular wax of the fruit after various storage intervals. Apples were pressure infiltrated with 0, 2, or 4% CaCl, solutions at harvest or four or six months after storage at 0 C. Examination of the epicuticular wax with low temperature scanning electron microscopy revealed that as the storage duration increased, the numerous cracks on the fruit surface became deeper and wider, until, after six months storage, the cracking extended through the thickness of the cuticle. Calcium uptake in fruit pressure infiltrated with the CaCl2 solutions after six months storage was greater than fruit treated at previous storage intervals. As storage duration increased, epicuticular wax cracks became deeper and calcium uptake increased.

Free access