Search Results
You are looking at 31 - 40 of 68 items for
- Author or Editor: Brian Whipker, x
To produce floriculture crops like mealy-cup sage (Salvia farinacea), growers must be equipped with cultural information including the ability to recognize and characterize nutrient disorders. ‘Evolution’ mealy-cup sage plants were grown in silica-sand culture to induce, describe, and photograph symptoms of nutritional disorders. Plants received a complete modified Hoagland's all-nitrate solution of (macronutrient concentrations in millimoles) 15 nitrate-nitrogen (N), 1.0 phosphorus (P), 6.0 potassium (K), 5.0 calcium (Ca), 2.0 magnesium (Mg), and 2.0 sulfur (S) plus (micronutrient concentrations in micromoles) 72 iron (Fe), 18 manganese (Mn), 3 copper (Cu), 3 zinc (Zn), 45 boron (B), and 0.1 molybdenum (Mo). Nutrient-deficient treatments were induced with a complete nutrient formula minus one of the nutrients. The B-toxicity treatment was induced by increasing the element 10-fold higher than the complete nutrient formula. Reagent-grade chemicals and deionized (DI) water of 18 million ohms per centimeter purity were used to formulate treatment solutions. We monitored plants daily to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and corresponding tissue concentrations were determined. Out of 13 treatments, 12 exhibited symptomology; Mo was asymptomatic. Symptoms of N, P, S, Ca, and K deficiencies and B toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown under N-, Cu-, and Zn-deficient conditions. Necrosis was a common symptom observed, but use of other diagnostic criteria about location on the plant and progression of the disorder can aid growers in diagnosing nutrient disorders of mealy-cup sage.
Days from sowing to anthesis were significantly different among six sunflower (Helianthus annuus L.) cultivars and ranged from 52 days for `Big Smile' to 87 days for `Pacino'. Height ranged from 13.5 cm for `Big Smile' to 37.3 cm for `Pacino'. Postproduction life ranged from 10 days for `Pacino' and `Elf' to 15 days for `Big Smile'. Postproduction quality ratings (1 to 5, with 5 the best) ranged from 3.9 to 5 after 5 days and 1 to 4.2 after 10 days. Quality ratings after 15 days were not significantly different among cultivars, because few plants were marketable at 15 days. Increasing the number of plants per pot from one to three or five reduced number of days to anthesis and postproduction life. Pot sizes of 10-, 13-, or 15-cm diameter, had no influence on production or postproduction characteristics. Promalin (62.5 to 500.0 mg·L–1) was not commercially useful in extending postproduction life. Two cultivars were found to be most suitable for pot production, `Pacino' and `Teddy Bear', with one plant per 15-cm pot and sprayed with B-Nine at 8000 mg·L–1.
Plant growth retardant (PGR) substrate drenches (in milligrams active ingredient) of ancymidol at 0.25, 0.5, 1, 2, or 4; paclobutrazol at 1, 2, 4, 8, or 16; and uniconazole at 0.25, 0.5, 1, 2, or 4 were applied to pampas grass (Cortaderia argentea Nees) to compare their effectiveness at chemical height control during greenhouse forcing and evaluate the residual effect on plant growth in the landscape. Cortaderia argentea plant height exhibited a quadratic dose response to paclobutrazol and uniconazole, while ancymidol-treated plants showed a linear dose effect. During greenhouse production, all rates of uniconazole reduced plant height by 56% to 71% compared to the untreated control, whereas paclobutrazol and ancymidol treatments reduced plant height by 14% to 61% and 0% to 34%, respectively. Severe height retardation was evident at 2 mg of uniconazole. By week 5 in the field all plants treated with uniconazole, paclobutrazol doses of 4, 8, or 16 mg, and with 4 mg of ancymidol were shorter than the untreated control. By week 24 in the field, all plants exhibited similar heights except plants treated with uniconazole at 1, 2, or 4 mg remained shorter than the untreated control. In conclusion, each PGR was effective in controlling plant height of Cortaderia argentea during greenhouse forcing. Furthermore, plants treated with low to moderate rates of ancymidol or paclobutrazol grew out of the regulating effect by week 5 in the landscape. These results demonstrate that PGR can be effectively and economically employed in the production of Cortaderia argentea.
Plant growth regulators (PGRs) are used to control excessive plant growth in potted crops to improve quality and compactness for shipping and display. Pineapple lily (Eucomis sp.), a recent introduction to the potted crop market, can have excessive foliage growth and inflorescence height making the use of PGRs desirable. Bulbs of ‘Leia’ pineapple lily were forced in the greenhouse and drenched at leaf whorl emergence with three PGRs at five different concentrations: 1) flurprimidol (0.25, 0.5, 1.0, 2.0, and 4.0 mg per 6.5-inch pot), 2) uniconazole (0.25, 0.5, 1.0, 2.0, and 4.0 mg/pot), or 3) paclobutrazol (0.5, 1.0, 2.0, 4.0 and 8.0 mg/pot) and an untreated control. As concentration increased, days to anthesis increased and foliage height decreased for each PGR. Paclobutrazol (4.0 and 8.0 mg/pot), uniconazole (4.0 mg/pot), and flurprimidol (2.0 and 4.0 mg/pot) treatments resulted in excessive stunting with none of the plants being marketable. Flurprimidol had the greatest influence on plant growth among all the PGRs. Acceptable concentrations for each PGR are paclobutrazol at 0.5 to 2.0 mg/pot, uniconazole at 0.25 to 2.0 mg/pot, and flurprimidol at 0.5 to 1.0 mg/pot based on percentage of marketable plants and foliage and inflorescence height suppression without excessively increasing the number of days to anthesis.
Phosphorus (P) deficiency commonly results in the development of red-to-purple coloration in plant foliage, typically attributed to anthocyanins. Betacyanins are a red pigment found in some plant species that do not produce anthocyanins, including Alternanthera sp. This study was conducted to investigate the effects of P nutrition on the betacyanin concentration and subsequent foliar coloration of ‘Purple Prince’, ‘Brazilian Red Hots’, and ‘Little Ruby’ alternanthera (Alternanthera brasiliana). The purpose of this study was to determine whether P fertilization management could enhance the coloration and aesthetic appeal of alternanthera. Custom fertilizers provided P concentrations of 0, 2.5, 5, 10, and 20 mg·L−1 P. One-half of the plants from each P concentration were restricted to 0 mg·L−1 P 1 month after transplant to determine whether adequate size could be attained before withholding P. Differences in P response were observed among cultivars for hue, betacyanin content, and plant size. Concentrations ≤5 mg·L−1 P resulted in plants that were more compact in terms of plant height and diameter, had deeper red foliage coloration, and greater foliar betacyanins compared with plants grown with greater P concentrations. Plants initially grown with 5 or 10 mg·L−1 P attained marketable size before P restriction and developed more red pigmentation compared with plants grown with P for the remaining duration of the study. Regression analysis demonstrated height was maximized with 3 to 8 mg·L−1 P, diameter with 4.1 to 8.4 mg·L−1 P, and branching with 10.0 mg·L−1 P. Foliar betacyanin concentrations were greatest in plants grown without P, reaching 269 mg/100 g fresh weight, whereas plants grown with 10 or 20 mg·L−1 P were 95% less (averaged ≈13 mg/100 g fresh weight). This study demonstrates that P restriction can benefit the aesthetic appeal of alternanthera and provides the first confirmation that P nutrition is associated with betacyanin accumulation.
Paclobutrazol drenches were applied at 0, 2, 4, 8, 16, or 32 mg a.i./pot to potted sunflowers (Helianthus annuus L. `Pacino') to determine its effect on growth. Plant height was shorter as paclobutrazol dose increased up to 16 mg; however, additional increases in dose had little effect on height. Severe height retardation of `Pacino' plants was evident at 16 and 32 mg. Plants treated with 2 mg of paclobutrazol were 17% and 25% smaller in diameter than untreated plants in Expts. 1 and 2, respectively. Plant diameter was smaller as paclobutrazol dose increased up to 16 mg, with additional increases in dose having little effect on plant diameter in Expt. 2. Plants treated with 16 or 32 mg of paclobutrazol exhibited phytotoxicity symptoms including crinkled leaves and stunted growth, and smaller and greener leaves. Sunflower plant growth was greater in the summer (Expt. 1) than in winter (Expt. 2). In the summer higher doses of paclobutrazol will be required than in winter for growth control. Marketable sized plants grown in 15- to 16.5-cm-diameter pots were produced with doses of paclobutrazol at 2 and 4 mg in both seasons, and doses up to 8 mg can also be used in summer for growth control.
Paclobutrazol drench applications of 0, 2, and 4 mg a.i./pot were applied to `Pacino' potted sunflowers (Helianthus annuus L.) and `Red Pigmy' tuberous rooted dahlias (Dahlia variabilis Willd.) grown in substrates containing 50%, 60%, 70%, or 80% (by volume) sphagnum peat or coir, with the remainder being perlite, to study the efficacy of paclobutrazol (Bonzi). Potted sunflower plant height differed significantly for peat- and coir-based substrates, with greater plant height being observed in coir-based substrates. Plant diameter was significantly greater at higher percentages of peat or coir in the substrate at 2 and 4 mg of paclobutrazol. Inflorescence diameter also was significantly decreased as paclobutrazol concentration increased. When the percent of height control from the untreated plants for potted sunflower was compared between coir and peat-based substrates, the percent height reduction was similar for peat- and coir-based substrates at 2 mg of paclobutrazol and height control was greater at 4 mg of paclobutrazol in coir-based substrates. The differences in plant growth observed in peat- and coir-based substrates can be attributed to differences in physical properties of these substrates. Dahlia plant height, diameter, and number of days until anthesis were not influenced by substrate type or percentage. However, dahlia growth was significantly reduced as paclobutrazol concentration increased. Coir-based substrates did not reduce the activity of paclobutrazol drenches compared to peat-based substrates, although to compensate for the greater amount of plant growth in coir-based substrates, paclobutrazol concentrations may need to be increased slightly to achieve a similar plant height as with peat-based substrates.