Search Results

You are looking at 31 - 40 of 48 items for

  • Author or Editor: Arthur Villordon x
Clear All Modify Search

Phosphorus deprivation (−P) reduced sweetpotato storage root length (SRL) regardless of the presence or absence of a compacted layer (CL). The combination of −P and the presence of a simulated compacted layer (+CL) reduced SRL relative to the P-sufficient (+P) control plants grown without a compacted layer (−CL) by 44% and 40%, respectively, in ‘Bayou Belle’ and ‘Beauregard’ cultivars. In both cultivars, the combination of −P and −CL also reduced SRL by 36% (‘Bayou Belle’) and 28% (‘Beauregard’) relative to the control plants. There was a significant planting date × cultivar effect in the temporal −P studies, with a general trend for SRL reduction with −P at 10-day intervals over a 50-day growing period. −P treatment reduced ‘Bayou Belle’ SRL after 10 days but not after 20 days. In P source plant status studies, the −P/−P treatment (source plant P status/daughter plant P status) was associated with 50% and 48% reduction in SRL in ‘Bayou Belle’ and ‘Beauregard’ daughter plants, respectively, relative to the +P/+P control plants. Taken together, these findings corroborate previous experimental evidence on the role of P in determining root length in other plant species and experimental systems. These experimental findings have practical applications in the management of P in sweetpotato seed and production systems. The results of the current study can lead to follow-up work that validates cultivar-specific P requirements and how such information can be used to optimize P management as it relates to the production of storage roots of consistent length and shape. The methods and approaches used in the current study can be adopted and modified in follow-up investigations that seek to shed light on the precise mechanisms of SRL determination in sweetpotato.

Open Access

Forward and stepwise regression methods identified variables related to the influence of transplanting date on yield of U.S. #1 sweetpotatoes. The variables were mean minimum soil temperature 5 days after transplanting (DAT), wind direction at transplanting, and accumulated heat units (growing degree-days) 5 DAT. Machine learning techniques identified the same variables using leave-one-out and k-fold cross-validation methods. Growers and crop consultants, in collaboration with knowledge workers, can use this information in conjunction with public and subscription-based weather forecasts to further optimize transplanting date determination and for making risk-averse decisions. These results help to underscore the importance of consistent transplant establishment as one of the determinants of storage root yield in sweetpotatoes.

Free access

Production of disease-free sweetpotato [Ipomoea batatas (L.) Lam.] transplants is of major importance to certified and foundation seed programs and producers. Sweetpotato roots are traditionally planted and cuttings are harvested from propagation beds. The objective of this study was to investigate the efficiency of producing cuttings in nursery containers. Virus-tested and virus-infected `Beauregard' sweetpotato transplants were harvested from planting beds for the purpose of producing cuttings for transplants. Cuttings were established in 3.7-L plastic nursery containers filled with 100% pine bark amended with either low, medium, or high rates of Osmocote 14-14-14 and dolomitic lime. Resulting transplants produced a greater number of cuttings and greater plant biomass with higher fertilizer rates. Increasing fertilizer rates also had a positive effect on cutting production and biomass. Dry weight and stem growth were similar for both virus-infected and virus-tested transplants following first and second harvests. Producing foundation cuttings in nursery containers filled with a pine bark medium proved to be an efficient method of increasing virus-tested sweetpotato cuttings.

Free access

The East African region in sub-Saharan Africa (SSA) is widely considered as one of the secondary centers of diversity for sweetpotatoes [Ipomoea batatas (L.) Lam.]. Farmers in the region typically grow landraces, but hybridizations occasionally result in new genotypes. Factors such as regional conflicts, natural disasters, disease, and land pressure continually threaten the SSA sweetpotato gene pool. Despite this threat, very little updated information is easily accessible about SSA germplasm collections. Such information is valuable for purposes of management, exploration, and conservation. Using germplasm collection data from Kenya, Tanzania, and Uganda, we demonstrate how publicly available GIS-based tools, e.g., DIVA-GIS, can be used to document current collections as well as make this information easily accessible, searchable, and portable. First, collection data from each country were compiled and known collection sites were georeferenced using available gazetteers. Following data cleaning and verification, georeferenced data were then converted into a GIS-compliant format, primarily as shapefiles. All files were then copied into storage media for exchange among stakeholders. To further demonstrate the portability of the GIS database files, available World Wide Web GIS web viewers enabled real-time access to GIS files uploaded to an experimental web site. This work demonstrates that with very little expense, access to extant SSA germplasm information for sweetpotatoes can be improved using publicly available GIS tools.

Free access

Adventitious roots of ‘Beauregard’ and ‘Georgia Jet’ sweetpotato were observed and anatomically characterized over a period of 60 days of storage root development. The majority of ‘Beauregard’ and ‘Georgia Jet’ adventitious roots sampled at 5 to 7 days after transplanting (DAT) possessed anatomical features (five or more protoxylem elements) associated with storage root development. The majority of ‘Beauregard’ (86%) and ‘Georgia Jet’ (89%) storage roots sampled at 60 to 65 DAT were traced directly to adventitious roots extant at 5 to 7 DAT. The two varieties, however, differed in the timing in which regular and anomalous cambia were formed. Regular vascular cambium development, i.e., initiation and completion, was observed in both varieties at 19 to 21 DAT. Formation of complete regular vascular cambium was negligible for ‘Beauregard’ (4%) in comparison with ‘Georgia Jet’ (32%) at 26 to 28 DAT. However, anomalous cambia development adjacent to xylem elements was greater in ‘Beauregard’ (30%) in comparison with ‘Georgia Jet’ (13%). Nearly 40% to 50% of samples in both varieties showed extensive lignification in the stele region. At 32 to 35 DAT, 62% to 70% of the adventitious roots for both varieties had either been initiated (developed anomalous cambium) or were lignified. The remaining adventitious roots showed intermediate stages of vascular cambium development. The adventitious root count increased up to 19 to 21 DAT and then remained constant up to 32 to 35 DAT. These accumulated results suggest that the initial stages of adventitious root development are critical in determining storage root set in sweetpotato.

Free access

Because sweetpotato (Ipomoea batatas) is vegetatively propagated, viruses and mutations can accumulate readily, which can lead to cultivar decline. Sweetpotato foundation seed programs in the United States maintain the integrity of commercial seed stock by providing virus-tested (VT) foundation seed to commercial producers. A survey was conducted in Louisiana from 2007 to 2009 to examine the performance and quality of the foundation seed after it had been integrated into commercial sweetpotato operations. G1 seed [grown 1 year after virus therapy in the foundation seed production field at the Sweet Potato Research Station, Louisiana State University Agricultural Center (LSU AgCenter), at Chase, LA] was used as a reference to compare the yield and virus incidence of growers' generation 2 (G2) and generation 3 (G3) seed roots (grown in the growers' seed production fields 1 or 2 years following the year of foundation seed production). Although yields of plants grown from G2 and G3 seed were 86.3% and 86.1% for U.S. No. 1 and 83.3% and 86.0% for total marketable, respectively, compared with the yields from G1 seed, they were not significantly different. Yield and virus incidence data suggest that seed quality may vary from year to year and from location to location. Results from this study suggest that producers are realizing yield benefits by incorporating VT foundation seed into their production schemes, but further benefits could be attained if ways to reduce re-infection with viruses can be found.

Free access