Search Results
Data from a four-parent diallel, involving one highbush (Vaccinium corymbosum L.) clone and three interspecific hybrids grown on mineral soil unamended with organic matter, were analyzed to determine combining ability effects for six traits: plant size, berry size, the number of days between flowering and fruiting (# DBF&F), the ratio of total fruit weight to canopy volume (TFW: CYV), days to fruit ripe, and yield. General combining ability effects were significant for all characters tested, except yield and berry size in 1984. Specific combining ability effects were significant for plant size in 1983, #DBF&F in 1984, TFW: CYV in 1984, and berry size in 1985. Vigorous and productive highbush cultivars can be developed for mineral soils by using the interspecific clones from this study and their selected recombinant to combine the genes for plant vigor with the high-quality fruit traits of highbush cultivars.
Seven highbush blueberry (Vaccinium corymbosum L.) cultivars were evaluated for their photosynthetic heat stability. Ail showed significant reductions in CO2 assimilation rates (A) as leaf temperatures were raised from 20 to 30C, although `Blue-crop', `Jersey', `Elliot', and `Rubel' (22% to - 27%) were significantly less affected than Spartan', `Bluejay', and `Patriot' (-41% to -51%). To determine whether temperature adaptations of highbush types can be broadened through hybridization with native, heat-tolerant species, `Bluecrop' was crossed with the V. darrowi Camp. selection Florida 4B, and F2, BC1, and BC2, populations were generated. This approach showed promise as genotypes were identified in all the derivative populations that were more heat tolerant than `Bluecrop' and had a high A.
Abstract
Two methods of evaluating seedling drought resistance in Vaccinium (blueberry) spp. were examined. Twenty interspecific populations were greenhouse-grown and either matric-stressed in a dry 1 sand : 1 soil medium or osmotic-stressed in a nutrient solution containing polyethylene glycol (PEG). In both tests, population means were separated statistically by shoot damage ratings. The correlation (r = 0.46) between the two tests was positive and significant. Progenies of clones JU64 and JU62, which are sister seedlings (V. myrsinites Lamark × V. angustifolum Aiton), were the most drought-resistant. The soil screening test appeared more accurate because it grouped populations with common parentage. These tests indicated that the progenies differ in genetic capacity to resist drought.
Abstract
Hardwood cuttings of ‘Tifblue’ rabbiteye blueberry (Vaccinium ashei Reade) rooted well in peat and a mix of peat and pine bark. Indolebutyric acid (IBA), chilling, and IB A plus chilling reduced percent rooting, but chilling alone and with IBA increased root volume over controls. Summer potting of cuttings increased root development but decreased total number of surviving plants.
Abstract
To determine if the net CO2 assimilation and water use efficiency (WUE) of highbush blueberry under high temperature can be improved genetically, gas exchange determinations were made for a selection of Vaccinium darrowi Camp (Florida 4B), a highbush cultivar (Bluecrop) (V. corymbosum L.), their F1 hybrid (US75), and two crosses of the F1 hybrid to another improved genotype (US239 and US245). All genotypes responded parabolically to increasing temperature at vapor pressure deficits <1 kPa. Maximum CO2 assimilation of US75 (15 µmol·s–1·m–2) was 30% to 40% higher than either parent. Carbon dioxide assimilation of US75 and Florida 4B was optimum at 30°C and that of ‘Bluecrop’ at 20°. The optimum for US239 was similar to ‘Bluecrop’, and that of US245 to Florida 4B. Florida 4B had higher WUEs than ‘Bluecrop’ at both 20° (5.64 µmol CO2/mmol H2O to 4.01) and 30° (3.73 to 2.53). US239 and US245 had significantly (P < 0.05) higher WUEs at 30° than did ‘Bluecrop’. Residual conductance to CO2 (gr) decreased in ‘Bluecrop’ when temperature was raised from 20° to 30°, but increased in all other genotypes. Due to the favorable gas exchange properties of US75 and US245 at 30°, we suggest that the high temperature tolerance of V. darrowi may be heritable and that US245 may be used to improve the heat tolerance of highbush blueberry.
Abstract
Seedlings from a diallel set of crosses of inbred and noninbred strawberry (Fragaria X ananassa Duch.) selections resistant to Phytophthora fragariae Hickman were inoculated with the 5 principal Eastern U. S. races of the fungus. The inbred selections, when selfed or intercrossed to other inbreds or to the noninbreds, did not transmit resistance to a greater portion of their progeny than the control cross, a cross of 2 noninbreds. Specific combining ability was found to be important in transmission of resistance to progeny.
Abstract
Most progenies from intercrossed or outcrossed inbred selections of strawberry (Fragaria × ananassa Duch.), germinated as well or better than a control outcross between 2 vigorous noninbred clones. Germination of an S3 progeny was lower than the control. In general, inbreeding reduced seedling vigor while intercrossing or outcrossing of inbreds restored vigor. Germination total and rate as expressed by an index were unrelated to subsequent seedling growth.