Search Results

You are looking at 21 - 30 of 36 items for

  • Author or Editor: Youbin Zheng x
Clear All Modify Search
Restricted access

Scott Henderson, David Gholami and Youbin Zheng

Sensor-based feedback control irrigation systems have been increasingly explored for greenhouse applications. However, the relationships between microclimate variation, plant water usage, and growth are not well understood. A series of trials were conducted to investigate the microclimate variations in different greenhouses and whether a soil moisture sensor-based system can be used in monitoring and controlling irrigation in greenhouse crop productions. Ocimum basilicum ‘Genovese Gigante’ basil and Campanula portenschlagiana ‘Get Mee’ bellflowers were monitored using soil moisture sensors for an entire crop cycle at two commercial greenhouses. Significant variations in greenhouse microclimates were observed within the two commercial greenhouses and within an older research greenhouse. Evaporation rates were measured and used as an integrated indicator of greenhouse microclimate conditions. Evaporation rates varied within all three greenhouses and were almost double the lowest rates within one of the greenhouses, suggesting microclimates within a range of greenhouses. Although these microclimate variations caused large variations in the growing substrate water contents of containers within the greenhouses, the growth and quality of the plants were unaffected. For example, no significant correlations were observed between the growth of bellflower plants and the average volumetric water content (VWC), minimum VWC, or maximum VWC of the growing substrate. The change in VWC at each irrigation (ΔVWC), however, was positively correlated with the fresh weight, dry weight, and growth index (GI) of the bellflowers. For basil, no significant correlations were observed between plant growth and ΔVWC. This suggests that sensor-based feedback irrigation systems can be used for greenhouse crop production when considerations are given to factors such as the magnitude of microclimate variation, crop species and its sensitivity to water stress, and growing substrate.

Restricted access

Deron Caplan, Mike Dixon and Youbin Zheng

In the expanding North American medical cannabis industry, growers lack reliable and systematically investigated information on the horticultural management of their crops, especially with regard to nutrient management and growing substrates. To evaluate organic substrates and their optimal nutrient management, five rates that supplied 57, 113, 170, 226, and 283 mg N/L of a liquid organic fertilizer (2.00N–0.87P–3.32K) were applied to container-grown plants [Cannabis sativa L. ‘WP:Med (Wappa)’] in two coir-based organic substrates. The trial was conducted in a walk-in growth chamber and the two substrates used were ABcann UNIMIX 2-HP (U2-HP) with lower container capacity (CC) and ABcann UNIMIX 2 (U2) with higher CC. U2-HP produced 11% higher floral dry weight (yield), 13% higher growth index (GI), 20% higher ∆9-tetrahydrocannabinol (THC) concentration, 57% higher THC yield (per plant), 22% higher Δ9-tetrahydrocannabidiolic acid (THCA) yield, and 20% higher cannabigerolic acid (CBGA) yield than U2. Increasing fertilizer rate led to increased growth and yield but also to a dilution of THC, THCA, and CBGA. In U2-HP, to maximize both yield and cannabinoid yield, the optimal organic fertilizer rates were those which supplied 212–261 mg N/L. For U2, the highest applied rate, that supplied 283 mg N/L, maximized yield; although lower rates delivered higher cannabinoid concentrations in dry floral material. The results on these substrates and recommended fertilizer rates can serve as a guide when using other organic fertilizers and substrates; although results may differ with cannabis variety.

Restricted access

Jasmine J. Mah, David Llewellyn and Youbin Zheng

In greenhouse ornamental crop production, bedding plants grown below high densities of hanging baskets (HBs) tend to be of lower quality. Hanging basket crops can decrease the red to far red ratio (R:FR) of the growing environment below; however, the extent to which decreased R:FR affects plant morphology and flowering of the lower-level crops is unknown. The present study examined effects of R:FR on morphology and flowering of marigold ‘Antigua Orange’ (Tagetes erecta), petunia ‘Duvet Red’ (Petunia ×hybrida), calibrachoa ‘Kabloom Deep Blue’ (Calibrachoa ×hybrida), and geranium ‘Pinto Premium Salmon’ (Pelargonium ×hortorum). Five R:FR light treatments were provided ranging from R:FR 1.1 (representing unfiltered sunlight) to R:FR 0.7 (representing shaded conditions under HBs) using light-emitting diodes (LEDs) in growth chambers, each with identical photosynthetically active radiation (PAR) (400–700 nm) and FR added to achieve the target R:FR ratio. Two experiments using the same R:FR treatments were conducted with day/night temperature regimes of 20 °C/18 °C and 25 °C/21 °C, respectively. In the second experiment, a fluorescent light treatment was included. The results of the second experiment were more dramatic than the first, where reducing R:FR from 1.1 to 0.7 increased height by 11%, 22%, and 32% in marigold, petunia, and calibrachoa, respectively, and increased petiole length in geranium by 10%. Compared with R:FR 1.1, the R:FR 0.7 shortened the time to the appearance of first flower bud by 2 days in marigold, whereas flowering was minimally affected in other species. Compared with pooled data from the LED treatments, fluorescent light increased relative chlorophyll content for all species, reduced height in marigold, petunia, calibrachoa, and geranium by 26%, 67%, 60%, and 48%, and reduced stem dry weight by 28%, 39%, 21%, and 31%, respectively. The differences in morphology observed under fluorescent light compared with LED R:FR treatments indicate that light quality manipulation is a potential alternative to chemical growth regulators in controlled environments such as greenhouses and growth chambers.

Full access

David Llewellyn, Youbin Zheng and Mike Dixon

Hanging basket (HB) production alters the light environment in the lower canopy of ornamental greenhouses by intercepting and altering the spectral quality of incoming light. If shading is sufficiently high, the quality of the lower crops can be reduced. This work investigated changes in light quantity and quality at the lower crop level caused by HB production in Ontario, Canada. Light sampling occurred at three commercial greenhouse facilities throughout the Spring 2012 HB season. The greenhouses represented a range of HB densities (1.8, 2.4, and 3.0 baskets/m2) and different HB canopy architectures (one, two, and three tiers of HBs). Light samples were taken at three fixed locations within each greenhouse facility: outside, HB level, and lower crop level. Photosynthetically active radiation (PAR) was logged continuously at each location within each greenhouse environment. Spectral scans were made at each sampling location, within each greenhouse facility, at various times throughout the season to assess how HB production altered the red to far red ratio (R:FR) at lower crop level. As the season progressed, outdoor daily light integrals (DLIs) more than doubled from <20 to >40 mol·m−2·d−1. Light reduction caused by polyethylene films and structural components varied among locations, but remained steady throughout the season, averaging 48.3% for the three locations. As the HB crops matured, the rate of decrease in PAR at lower crop level varied according to facility and HB density with mean reductions of 42.5%, 32.6%, and 37.7% for the one-, two-, and three-tiered facilities, respectively. Mean lower crop level DLIs were all very similar, between 9.4 and 9.9 mol·m−2·d−1. Accordingly, there may be insufficient light below HB canopies to produce high-quality crops of many varieties of bedding plants that are commonly grown in Ontario. The one- and two-tiered systems reduced the R:FR at lower crop level by 14% and 10%, respectively, whereas the three-tiered system caused no reduction. More work is required to determine if the observed far red shift is sufficient to alter crop quality. These case studies provide a backdrop against which to help determine and interpret horticultural management strategies for a variety of greenhouse crops.

Restricted access

Deron Caplan, Mike Dixon and Youbin Zheng

Cannabis producers, especially those with organic operations, lack reliable information on the fertilization requirements for their crops. To determine the optimal organic fertilizer rate for vegetative-stage cannabis (Cannabis sativa L.), five rates that supplied 117, 234, 351, 468, and 585 mg N/L of a liquid organic fertilizer (4.0N–1.3P–1.7K) were applied to container-grown plants with one of two coir-based organic substrates. The trial was conducted in a walk-in growth chamber and the two substrates used were ABcann UNIMIX 1-HP with lower water-holding capacity (WHC) and ABcann UNIMIX 1 with higher WHC. No differences in growth or floral dry weight (yield) were found between the two substrates. Pooled data from both substrates showed that the highest yield was achieved at a rate that supplied 389 mg N/L (interpolated from yield-fertilizer responses) which was 1.8 times higher than that of the lowest fertilizer rate. The concentration of ∆9-tetrahydrocannabinol (THC) in dry floral material was maximized at a rate that supplied 418 mg N/L, and no fertilizer rate effects were observed on Δ9-tetrahydrocannabidiolic acid (THCA) or cannabinol (CBN). The highest yield, cannabinoid content, and plant growth were achieved around an organic fertilizer rate that supplied 389 mg N/L during the vegetative growth stage when using the two coir-based organic substrates.

Free access

Youbin Zheng*, Thomas Graham, Stefan Richard and Mike Dixon

Pot gerbera (Gerbera jamesonii Var. `Shogun') plants were subirrigated with one of four nutrient solutions (10, 25, 50, and 100% of full strength) in order to determine whether currently used commercial nutrient solution concentrations can be reduced without negative impact on crop production. Nutrient concentration levels did not affect leaf area, flower number and appearance, and plant total dry weight. There were no significant differences in leaf chlorophyll content between the plants that received the 50 and 100% strength nutrient solutions. It is concluded that nutrient solution concentrations typically used in commercial greenhouse, for pot gerbera production, can be safely reduced by at least 50% without adversely affecting crop production. Nutrients accumulated in the top section of the growth substrate under all treatment levels; however, no phytotoxic effect was observed. Fertilizer inputs were reduced in the 50%, 25%, and 10% treatments by 54%, 75%, and 90% respectively. After 4 weeks recirculating, the quality of the nutrient solutions was still within acceptable limits.

Free access

Youbin Zheng*, Linping Wang, Weizhong Liu, John Sutton and Mike Dixon

Copper is one of the essential micro-nutrient elements for plants, but when in excess, is toxic to plants and other living organisms. Electrolytically generated copper and cupric sulphate are increasingly used by the greenhouse industry to control diseases and algae in hydroponic systems. However, there is little information regarding appropriate strategies for employing copper in greenhouse crop production. We investigated the physiological responses, growth and production of several ornamental crops (miniature rose, chrysanthemum and geranium) and greenhouse vegetable crops (pepper, cucumber, and tomato) with respect to Cu2+ concentration in the root zone. Tests were conducted using plants grown in nutrient solution, Promix and rockwool. Results showed that phytotoxic levels of Cu2+ were dependent on the crop species and growing substrate. Plants grown in nutrient solution exhibited symptoms of phytotoxicity at lower Cu2+ concentrations than those on the solid substrates. The ability of copper to control Pythium aphanidermatum and green algae was evaluated under both laboratory and greenhouse conditions. Copper was effective in suppressing green algae in nutrient solution, but did not control Pythium effectively. This presentation is a comprehensive summary of the research conducted over the last three years by our group on copper application in greenhouse systems.

Free access

Youbin Zheng, Thomas Graham, Stefan Richard and Mike Dixon

To determine whether currently used commercial nutrient solution concentrations can be reduced during the final stage (last 4 to 5 weeks) of production of potted gerbera (Gerbera jamesonii `Shogun') under recirculating subirrigation conditions, plants were grown under one of four nutrient levels (10%, 25%, 50%, and 100% of full strength). Nutrient concentration levels did not affect leaf area, flower number and appearance, and plant total dry weight. There were no significant differences in the greenness (as measured by SPAD meter) of leaves from plants that received the 50% and 100% strength nutrient solutions. However, leaves from plants that received the 10% and 25% strength solution showed significantly less greenness than that of the plants that received 50% and 100% strength nutrient solutions. There were interveinal chlorosis symptoms on the younger leaves of some plants in the 10% and 25% strength nutrient treatments. It is suspected that this interveinal chlorosis was due to iron (Fe) deficiency caused by the increased substrate pH. It is concluded that the nutrient solution concentrations typically used for potted gerbera production in commercial greenhouses at the final stage (4 to 5 weeks) under recirculating subirrigation conditions, can be safely reduced by at least 50% without adversely affecting crop production. Nutrient salts accumulated in the top section of the growth substrate under all treatments levels; however, no phytotoxic effects were observed. No differences in water use (141 mL per plant per day) were observed amid the various nutrient levels. Fertilizer inputs were reduced in the 50%, 25%, and 10% treatments by 54%, 75%, and 90% respectively, relative to the 100% treatment. After 4 weeks under recirculating conditions, the qualities of the nutrient solutions were still within acceptable limits.

Free access

Eric R. Rozema, Robert J. Gordon and Youbin Zheng

Certain ions such as Na+ and Cl can accumulate in recirculating greenhouse nutrient solutions and can reach levels that are damaging to crops. An option for the treatment of this problem is phytodesalinization with Na+ and Cl hyperaccumulating plants that could be added to existing water treatment technologies such as constructed wetlands (CWs). Two microcosm experiments were conducted to evaluate eight plant species including Atriplex prostrata L. (triangle orache), Distichlis spicata (L.) Greene (salt grass), Juncus torreyi Coville. (Torrey’s rush), Phragmites australis (Cav.) Trin. ex Steud. (common reed), Spartina alterniflora Loisel. (smooth cordgrass), Schoenoplectus tabernaemontani (C.C. Gmel.) Palla (softstem bulrush), Typha angustifolia L. (narrow leaf cattail), and Typha latifolia L. (broad leaf cattail) for their Na+ and Cl accumulation potential. An initial (indoor) experiment determined that J. torreyi, S. tabernaemontani, T. angustifolia, and T. latifolia were the best candidates for phytodesalinization because they had the highest Na+ and Cl tissue contents after exposure to Na+ and Cl-rich nutrient solutions. A second (outdoor) experiment quantified the Na+ and Cl ion uptake (grams of each ion accumulated per m2 of microcosm). J. torreyi, S. tabernaemontani, T. angustifolia, and T. latifolia accumulated 5.8, 3.9, 8.3, and 9.2 g·m−2 of Na+ and 25.7, 18.2, 31.6, and 27.2 g·m−2 of Cl, respectively. Of the eight species, T. latifolia and S. tabernaemontani showed the greatest potential to accumulate Na+ and Cl in a CW environment, whereas S. alterniflora, D. spicata, and P. australis showed the least potential.

Free access

Victoria Ann Surrage, Claudia Lafrenière, Mike Dixon and Youbin Zheng

Six individual growing substrate components were selected. From the individual components, 35 growing substrates were constructed. Preliminary analyses, which included pH, electrical conductivity, and macro- and micronutrient concentrations, combined with environmental and cost implications were conducted to identify which substrates had the appropriate properties for growing tomatoes. From the 35 combinations, four growing substrates were chosen as having preferred properties required for organic greenhouse tomato production. A 22-week growth experiment was performed to determine if any of the selected substrates could improve the marketable yield of tomatoes when compared with rockwool (RW) under greenhouse conditions. The greenhouse crop used for this experiment was Lycopersicon esculentum ‘beefsteak’ tomato, cultivar Matrix F1 Hybrid. Within the experiment, Forterra Royal GRO 1 (GRO 1; coconut coir/vermicompost) and Forterra Royal GRO 2 (GRO 2; aged pine bark/coconut coir/vermicompost) attained significantly higher marketable yields per plant compared with the plants grown in RW. A similar trend was seen in the incidence of Blossom End Rot (BER) with GRO 1 and GRO 2 having reduced numbers of BER incidences per plant when compared with RW. In conclusion, the addition of vermicompost to organic growing substrates is beneficial for tomato growth and yield.