Search Results

You are looking at 21 - 25 of 25 items for

  • Author or Editor: Xunzhong Zhang x
Clear All Modify Search
Free access

Li-Juan Zhang, Tian-Xiu Zhong, Li-Xin Xu, Lie-bao Han and Xunzhong Zhang

Soil water deficit impacts cold acclimation and freezing tolerance in creeping bentgrass (Agrostis stolonifera L.), but the mechanisms underlying have not been well understood. The objectives of this study were to investigate the effects of deficit irrigation before and during cold acclimation on osmoprotectants, antioxidant metabolism, and freezing tolerance in creeping bentgrass. The grass was subjected to three-soil moisture levels: well-watered [100% container capacity (CC)], deficit irrigation induced-mild drought stress (60% CC), and severe drought stress (30% CC) for 35 days including 14 days at 24/20 °C (day/night) and then 21 days under cold acclimation treatment (2 °C) in growth chambers. Leaf proline and total soluble sugar (TSS) levels were higher in the grass under mild drought stress relative to that under severe drought stress. Superoxide (O2 −·), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content were higher in the grass under severe drought relative to that under well-watered and mild drought stress at day 35. Mild drought stress increased catalase (CAT) and guaiacol peroxidase (POD) activity, induced new isoforms and increased band intensities of superoxide dismutase (SOD), CAT, and POD during cold acclimation (days 14 to 35). No differences in osmoprotectants, antioxidant metabolism, and freezing tolerance were found between mild drought and well-watered treatments. The results of this study suggest deficit irrigation-induced mild drought stress in late fall and winter could induce accumulation of osmoprotectants and improve antioxidant metabolism, and freezing tolerance, but severe drought stress could reduce freezing tolerance of creeping bentgrass in the region with limited precipitation.

Full access

E.H. Ervin, Xunzhong Zhang, J.M. Goatley Jr. and S.D. Askew

Creeping bentgrass (Agrostis stolonifera) is used extensively on temperate zone golf course greens, tees, and fairways, but often performs poorly in shade. Previous research has indicated that sequential applications of gibberellic acid (GA) inhibiting plant growth regulators (PGRs) such as trinexapac-ethyl (TE) increase cool-season turfgrass performance in 70-90% shade. This research was conducted to: 1) confirm appropriate TE application rates and frequencies for maintaining `Penncross' creeping bentgrass in dense shade in the mid-Atlantic region of the U.S.; 2) determine the efficacy of other PGRs, biostimulants, and iron (Fe); and 3) assess whether the addition of a biostimulant with TE would have additive, synergistic, or negative effects. The other compounds tested against TE and the control were: propiconazole (PPC), iron sulfate, CPR (a seaweed and iron containing biostimulant), and a generic seaweed extract (SWE) (Ascophyllum nodosum) plus humic acid (HA) combination. These treatments were applied to 88% shaded bentgrass every 14 days from May or June through October in 2001 and 2002, with turf quality, leaf color, root strength, photochemical efficiency, and antioxidant enzyme superoxide dismutase (SOD) activity being determined. While the quality of control plots fell below a commercially acceptable level by the second month of the trial, repeated foliar TE application provided 33% to 44% better quality throughout the experiment. Propiconazole resulted in 13% to 17% better quality through September of each year. Trinexapac-ethyl and PPC resulted in darker leaf color and increased mid-trial root strength by 27% and 29%, respectively. Canopy photochemical efficiency and leaf SOD activity were also increased due to TE in August of both years. Treatment with Fe, CPR, or SWE+HA did not have an effect on quality, root strength, SOD, or photochemical efficiency, but periodic increases in color were observed. The addition of CPR to TE in 2002 provided results that were not different from those of TE-alone. This and previous studies indicate that restricting leaf elongation with anti-GA PGRs is of primary importance for improving shade tolerance, while treatments that increase leaf color or chlorophyll levels without restricting leaf elongation are relatively ineffective.

Restricted access

Xunzhong Zhang, Wenli Wu, Erik H. Ervin, Chao Shang and Kim Harich

Plant hormones play an important role in plant adaptation to abiotic stress, but hormonal responses of cool-season turfgrass species to salt stress are not well documented. This study was carried out to investigate the responses of hormones to salt stress and examine if salt stress-induced injury was associated with hormonal alteration in kentucky bluegrass (KBG, Poa pratensis L.). The grass was grown in a growth chamber for 6 weeks and then subjected to salt stress (170 mm NaCl) for 28 days. Salt stress caused cell membrane damage, resulting in photosynthetic rate (Pn), chlorophyll (Chl), and turf quality decline in KBG. Salt stress increased leaf abscisic acid (ABA) and ABA/cytokinin (CK) ratio; reduced trans-zeatin riboside (ZR), isopentenyl adenosine (iPA), and indole-3-acetic acid (IAA), but did not affect gibberellin A4 (GA4). On average, salt stress reduced ZR by 67.4% and IAA by 58.6%, whereas it increased ABA by 398.5%. At the end of the experiment (day 28), turf quality, Pn, and stomatal conductance (g s) were negatively correlated with ABA and ABA/CK ratio, but positively correlated with ZR, iPA, and IAA. Electrolyte leakage (EL) was positively correlated with ABA and ABA/CK and negatively correlated with ZR, iPA, IAA, and GA4. GA4 was also positively correlated with turf quality and g s. The results of this study suggest that salt stress-induced injury of the cell membrane and photosynthetic function may be associated with hormonal alteration and imbalance in KBG.

Free access

Xunzhong Zhang, Damai Zhou, Erik H. Ervin, Greg K. Evanylo, Derik Cataldi and Jinling Li

The presence of biologically active substances (BAS) in biosolids may enhance plant stress tolerance and growth, but the underlying mechanisms are not well understood. This greenhouse study investigated the effects of two biosolids: Alexandria (anaerobically digested; Class A product from the Alexandria Sanitation Authority Wastewater Treatment Facility in Alexandria, VA) and Blue Plains (lime-stabilized; Class B product from Washington, DC, Water and Sewer Authority) on tall fescue [Lolium arundinaceum (Schreb.) S.J. Darbyshire] antioxidant enzyme activity associated with drought resistance. Treatments included a fertilizer control, Alexandria (11.9 g·kg−1 soil) and Blue Plains (17.6 g·kg−1 soil) biosolids to match the nitrogen in the control. Tall fescue physiological responses were measured under well-watered or drought-stressed conditions. Drought stress reduced turfgrass quality, photochemical efficiency (PE), and catalase (CAT) activity while increasing superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) activities. The two biosolids improved turfgrass quality and root mass under both soil moisture regimes and delayed leaf wilting during moisture stress. The biosolids also improved PE, SOD, and APX activities relative to the control under both soil moisture regimes. The data suggest that biosolids application may improve antioxidant enzyme activity and subsequent drought resistance.

Free access

Xunzhong Zhang, Erik H. Ervin, Yiming Liu, Guofu Hu, Chao Shang, Takeshi Fukao and Jasper Alpuerto

Water deficit is a major limiting factor for grass culture in many regions with physiological mechanisms of tolerance not yet well understood. Antioxidant isozymes and hormones may play important roles in plant tolerance to water deficit. This study was designed to investigate antioxidant enzymes, isozymes, abscisic acid (ABA), and indole-3-acetic acid (IAA) responses to deficit irrigation in two perennial ryegrass (Lolium perenne L.) cultivars contrasting in drought tolerance. The plants were subjected to well-watered {100% container capacity, 34.4% ± 0.21% volumetric moisture content (VWC), or deficit irrigation [30% evapotranspiration (ET) replacement; 28.6% ± 0.15% to 7.5% ± 0.12% VWC]} conditions for up to 8 days and rewatering for 4 days for recovery in growth chambers. Deficit irrigation increased leaf malondialdehyde (MDA) content in both cultivars, but drought-tolerant Manhattan-5 exhibited lower levels relative to drought-sensitive Silver Dollar. Superoxide dismutase (SOD) activity declined and then increased during water-deficit treatment. ‘Manhattan-5’ had higher SOD activity and greater abundance of SOD1 isozyme than ‘Silver Dollar’ under water deficit. Deficit irrigation increased catalase (CAT) and ascorbate peroxidase (APX) activity in ‘Manhattan-5’, but not in ‘Silver Dollar’. ‘Manhattan-5’ had higher CAT, APX, and peroxidase (POD) activity than ‘Silver Dollar’ during water limitation. Deficit irrigation increased mRNA accumulation of cytosolic cupper/zinc SOD (Cyt Cu/Zn SOD), whereas gene expression of manganese SOD (Mn SOD) and peroxisome APX (pAPX) were not significantly altered in response to deficit irrigation. No differences in Cyt Cu/Zn SOD, Mn SOD, and pAPX gene expression were found between the two cultivars under deficit irrigation. Water limitation increased leaf ABA and IAA contents in both cultivars, with Silver Dollar having a higher ABA content than Manhattan-5. Change in ABA level may regulate stomatal opening and oxidative stress, which may trigger antioxidant defense responses. These results indicate that accumulation of antioxidant enzymes and ABA are associated with perennial ryegrass drought tolerance. Activity and isozyme assays of key antioxidant enzymes under soil moisture limitation can be a practical screening approach to improve perennial ryegrass drought tolerance and quality.