Search Results
You are looking at 21 - 30 of 68 items for
- Author or Editor: Timothy K. Broschat x
Hong Kong orchid tree is an outstanding flowering tree for tropical and subtropical areas, but in south Florida’s nutrient-poor sand soils, it typically develops moderate to severe K and Mg deficiency symptoms during the fall, winter, and spring months. A 3-year field experiment was conducted to determine if flowering was responsible for the development of these deficiencies and to determine if these deficiencies could be prevented by fertilization with medium or high rates of a 24N–0P–9.2K turf fertilizer (24–0–11) an 8N–0P–10K–4Mg plus micronutrients palm fertilizer (8–0–12) or a 0N–0P–13.3K–6Mg plus micronutrients palm fertilizer (0–0–16). Onset of deficiency symptoms coincided with the beginning of flowering, but leaf nutrient concentrations of N, P, K, and Mg continued to decline after flowering ceased in late January, presumably because of movement of these elements from the leaves to stem tissue. Leaf nutrient concentrations were poorly or negatively correlated with all measured plant quality variables and were poor indicators of plant quality or nutritional status. Although fertilization with a high rate of 24–0–11 or either rate of 8–0–12 increased tree height, caliper, and number of flowers, no treatment significantly decreased the severity of K and Mg deficiencies.
In two experiments, pasteurized poultry litter (PPL) was evaluated as a potential substitute for controlled-release fertilizers in the production of container-grown downy jasmine (Jasminum multiflorum), chinese hibiscus (Hibiscus rosa-sinensis), and areca palm (Dypsis lutescens). Downy jasmine and chinese hibiscus generally grew better when provided with PPL as a micronutrient source than with no micronutrients or with an inorganic micronutrient blend (MN). However, areca palm grew poorly with PPL as a fertilizer supplement compared with MN-fertilized areca palm. PPL provided high levels of ammonium nitrogen, phosphorus, and potassium during the first few weeks, but soil solution levels of these elements dropped off rapidly in subsequent weeks. The large amount of phosphorus leached from the containers fertilized with PPL is an environmental concern.
Potassium (K) deficiency is a widespread problem in palms growing in sandy or calcareous soils in southeastern United States. Its symptoms are highly conspicuous, reduce palm aesthetic appeal, are difficult to correct, and can be exacerbated by nitrogen (N) fertilization. The objective of this study was to determine the optimum fertilization rates and ratio for N and K in areca palm [Dypsis lutescens (H. Wendl.) Beentje & J. Dransf. and Mexican fan palm (Washingtonia robusta H. Wendl.) growing in a calcareous sandy fill soil. Both species had their highest quality when fertilized with 12.2 g·m−2 N and 12.2 g·m−2 K from controlled-release (2–3 month release) sources every 3 months. Actual N and K application rates were better predictors of palm quality than N:K ratio at the highest fertilization rates that would be recommended for field nursery production. However, at lower application rates more typical of those used for landscape palm maintenance, palm quality improved as the N:K application ratio was decreased.
Spathiphyllum Schott. `Mauna Loa Supreme' and areca palm (Chrysalidocarpus lutescens H. Wendl.) were grown for 6 months in 3.5-liter containers using a pine bark–sedge peat–sand container medium or a native sand soil. Plants were fertilized with equivalent amounts of a 21N–3P–12K fertilizer applied weekly as a liquid, monthly as a soluble granular, bimonthly as a lightly coated controlled-release, or every 6 months as a heavily coated controlled-release fertilizer. All leachates were collected and analyzed weekly for NO3-N, PO4-P, and K. Amounts of all three nutrients leached per week varied considerably in response to fertilizer reapplications or high rainfall. Nitrate leaching generally decreased over time, PO4-P leaching increased, and K remained relatively constant. Shoot dry weights of spathiphyllum were equivalent for all fertilization methods, but areca palm shoot dry weights were highest with liquid fertilization and lowest with the soluble granular fertilizer. Nutrient leaching for all three ions was highest for the soluble granules and lowest for the two controlled-release formulations.
Broadleaf ornamental trees are known to vary widely in their responses to fertilization, depending on the species and soil and other environmental factors. Thus, it is important to study the responses of a wide range of tree species to fertilization, especially on nutrient-poor soils. Four species of temperate to tropical trees, live oak (Quercus virginiana), west indian mahogany (Swietenia mahagoni), black olive (Bucida buceras ‘Shady Lady’), and beautyleaf (Calophyllum brasiliense), planted into a sandy native soil in south Florida were fertilized with a 24N–0P–9.3K turf fertilizer or an 8N–0P–10K–4Mg plus micronutrients palm fertilizer at rates of 10 or 20 g of nitrogen per tree four times per year. Tree height, width, caliper, and nutrient deficiency rating scores for nitrogen, potassium, and magnesium were determined at 1 year after planting (establishment period) and at 3 years after planting (maintenance phase). Data from these measured variables were subjected to principal component analysis to obtain a single measure of overall quality, namely, the scores for each tree on the first principal component. West Indian mahogany showed no response to fertilization during or following establishment. Either fertilizer type or rate improved live oak, black olive, and beautyleaf quality over that of unfertilized controls during both establishment and maintenance phases, but the high rate of the palm fertilizer was superior to either rate of the turf fertilizer for beautyleaf both during establishment and afterward. Leaf nutrient concentrations generally were poorly correlated with overall tree quality, but manganese concentrations differed significantly among treatments for all four species. Based on these results, fertilization of West Indian mahogany is not recommended, but live oak, black olive, and beautyleaf will benefit from fertilizer applied at the time of planting and after establishment.
The relative release rates of boron (B) from nine soluble and controlled-release B fertilizer sources were determined in sand leaching columns at 21 °C. Solubor was almost completely leached from the sand within 5 weeks. Boric oxide released the majority of its B within 7 weeks, whereas Dehybor provided B for up to 13 weeks. Granubor release rates were linear through ≈12 weeks. The five products containing calcium or sodium calcium borates released B much more slowly, with probertite and ulexite being the most rapid followed by B32 G, colemanite, and B38 G. B38 G released only ≈40% of its B content during the 104-week leaching study. The rapid release and high B concentrations associated with Solubor suggest a greater potential for phytotoxicity with this source than other slower-release sources.
Ixoras (Ixora L.) growing in calcareous sandy soils are highly susceptible to a reddish leaf spot disorder. Symptoms appear on the oldest leaves of a shoot and consist of irregular diffuse brownish-red blotches on slightly chlorotic leaves. Symptoms of K deficiency, P deficiency, and both K and P deficiency were induced in container-grown Ixora `Nora Grant' by withholding the appropriate element from the fertilization regime. Potassium-deficient ixoras showed sharply delimited necrotic spotting on the oldest leaves, were stunted in overall size, and retained fewer leaves per shoot than control plants. Phosphorus-deficient plants showed no spotting, but had uniformly brownish-red older leaves and olive-green younger foliage. Plants deficient in both elements displayed symptoms similar to those observed on landscape plants. Symptomatic experimental and landscape ixoras all had low foliar concentrations of both K and P.
Twenty-two preemergent herbicides were applied at their maximum labeled rates and twice those rates to determine their safety and effectiveness on areca palm [Dypsis lutescens (H. Wendl.) Beentje & Dransf.], pygmy date palm (Phoenix roebelenii O'Brien), and mexican fan palm (Washingtonia robusta H. Wendl.). Two products, dichlobenil and metolachlor showed consistent phytotoxicity on all three species. Several of the remaining products caused death of the apical meristem in mexican fan palms and reduced growth rates in pygmy date palms, but most caused little damage to areca palms. Herbicides applied as sprays generally remained effective for 2 to 4 months, whereas granular products, especially those containing oxyfluorfen plus another chemical, were effective for up to 8 months.
Five-gram (0.18 oz) samples of two controlled-release fertilizers (CRFs), Osmocote 15N–3.9P–10K (8–9 month) (OSM) and Nutricote 18N–2.6P–6.7K (type 180) (NUTR), were sealed into polypropylene mesh packets that were placed on the surface of a 5 pine bark: 4 sedge peat: 1 sand (by volume) potting substrate (PS), buried 10 cm (3.9 inches) deep below the surface of PS, buried 10 cm below the surface of saturated silica sand (SS), or in a container of deionized water only. Containers with PS received 120 mL (4.1 floz) of deionized water three times per week, but the containers with SS or water only had no drainage and were sealed to prevent evaporation. Samples were removed after 2, 5, or 7 months of incubation at 23 °C (73.4 °F) and fertilizer prills were crushed, extracted with water, and analyzed for ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), phosphorus (P), and potassium (K). Release rates of NO3-N were slightly faster than those of NH4-N and both N ions were released from both products much more rapidly than P or K. After 7 months, OSM prills retained only 8% of their NO3-N, 11% of their NH4-N, 25% of their K, and 46% of their P when averaged across all treatments. Nutricote prills retained 21% of their NO3-N, 28% of their NH4-N, 51% of their K, and 65% of their P. Release of all nutrients from both fertilizers was slowest when applied to the surface of PS, while both products released most rapidly in water only. Release rates in water only exceeded those in SS, presumably due to lower rates of mass flow in SS.