Search Results

You are looking at 21 - 30 of 53 items for

  • Author or Editor: Terence Robinson x
Clear All Modify Search

A tank mix of fish oil plus liquid lime sulfur has proven to be an effective chemical thinner for apples in the bloom and postbloom periods. This combination was labeled for use as a chemical thinner in Washington State in 2003. There are several concerns with fish oil when used in this thinning mixture. Phytotoxicity is one concern. Apple growers have a reluctance to utilize this oil because of its expense and repulsive odor. Research to date has been conducted using oil from a single small source in Washington State. Shipping fish oil across the country is expensive and the consistency and purity of fish oil from other sources is unknown. Fish oil may function as a surfactant and penetrant, and it may also have a direct thinning effect. The objective of these studies was to evaluate the efficacy of several surfactants and oils in combination with lime sulfur for thinning apples. Lime sulfur has been less effective as a thinner when used alone than when used with oil in our studies. Regulaid, LI-700, and Silwet L-77 were shown to be less effective than oils for achieving thinning. Vegetable oil has been very effective in the thinning combination, while petroleum oils have been effective in some eastern U.S. trials, but less effective in the west. Tank mixing fish oil with lime sulfur has remained among the best treatments in our trials, while vegetable oil also shows promise.

Free access

We performed an economic analysis of five orchard production systems [Slender Pyramid/M.26 (840 trees/ha), Vertical Axis/M.9 (1538 trees/ha), Slender Axis/M.9 (2244 trees/ha), Tall Spindle/M.9 (3312 trees/ha), and Super Spindle (5382 trees/ha)] using composite yield and labor usage data from several replicated research plots in New York state. Other costs and fruit returns were averages from a group of commercial fruit farms in New York state. The systems varied in costs of establishment from a low of $18,431/ha for the Slender Pyramid system to high of $47,524/ha for the Super Spindle system. The large differences in establishment costs were largely related to tree density. All of the systems had a positive internal rate of return (IRR) and net present value (NPV) after 20 years. They ranged from a low of 7.5% IRR for the Slender Pyramid system to a high of 11.1% IRR for the Slender Axis system. Profitability, as measured by NPV, was curvilinearly related to tree density with intermediate densities giving greater profitability than the highest densities. The optimum density was 2600 trees/ha when NPV was calculated per hectare, but only 2200 trees/ha when NPV was calculated per $10,000 invested. The earliest break-even year was 10 for the Slender Axis and Tall Spindle systems. The latest break-even year was 13 for the Slender Pyramid. An estimate of the number of hectares required to produce a $100,000 annual profit to the business was 222 for the slender pyramid system and 84–104 ha of the three best systems (Super Spindle, Tall Spindle, and Slender Axis). The analysis revealed that efforts to control establishment costs of land, trees and support system can substantially increase lifetime profits.

Free access

Four methods of estimating daily light interception (fisheye photography with image analysis, multiple-light sensors, ceptometer, and point grid) were compared using various apple (Malus domestica Borkh.) tree forms: slender spindle, Y- and T-trellises, and vertical palmette. Interactions of tree form, time of day, and atmospheric conditions with light interception estimates were examined. All methods were highly correlated to each other (r 2 > 0.92) for estimated daily mean percent total light interception by the various tree forms, except that the point grid method values were slightly lower. Interactions were found among tree form, time of day, and diffuse/direct radiation balance on estimated light interception, suggesting that several readings over the day are needed under clear skies, especially in upright canopies. The similar results obtained by using the point grid method (counting shaded/exposed points on a grid under the canopy) on clear days may allow rapid, simple, and inexpensive estimates of orchard light interception.

Free access

Experiments conducted since 1986 indicate that multi-nutrient fertigation may be effective in improving early growth and yield of new orchards. However, the early studies did not provide information concerning the contributions of individual nutrient elements to these responses. Experiments were established in 1993 and 1994 to compare effectiveness of alternative sources, rates, and methods of applying K, Zn, and Cu through drip irrigation compared with annual soil surface applications to `McIntosh'/M.9 and `Empire'/M.9 trees. After 3 years, leaf K, cumulative shoot growth, and first crop year yields were increased by application of K. Differences between sources, rates, times, or methods of application generally were not significant when relatively high rates were applied. However, early results from a rate study indicate a significant K source by rate interaction. Soil surface application of K plus drip irrigation appears to be comparable to fertigation in supplying this element. After 2 years, applying EDTA chelates of Zn and Cu through fertigation increased leaf Zn and Cu, respectively, but high rates required are considered to be uneconomical when compared with foliar sprays of these elements.

Free access

For 4 years, six-flowered clusters on 20, unthinned, open-pollinated `Empire'/MM106 trees were labeled at bloom and fruit drop monitored at the king (K) and lateral positions L1 (basal) to L5 (distal) (100 to 120 clusters/year). Depending on year, fruit dropped in 1, 2, or 3 major periods by 8 weeks postbloom (PB), with total percent dropped between 65% and 75%. K fruit dropped least, L4 and L5 most. Trends were that K fruit at October harvest were largest and heaviest (significantly so in some years) and L5 fruit smallest. In nine trees, hand-thinned to single-fruited spurs at 12 days PB, where the fruit at the retained position was known, there was no statistical difference in fruit weight, fruit size, or seed count between cluster positions at final harvest, although L5 fruit tended to be smallest. Numbers of spurs labeled varied from 45 to 72. Percent fruit retained at each position at October harvest was K = 89%, L1 or L2 = 87%, L3 = 83%, L4 = 83%, and L5 = 85%. Presumably, in unthinned trees the limited resources are preferentially taken by the K fruit, which especially seems to reduce set and size of its nearest lateral fruit. However, in thinned trees under lighter cropping stresses, a fruit retained at any of the positions within a cluster has a similar potential for achieving the size and weight typically seen in king fruit.

Free access

Choice of cultivar, training system, planting density, and rootstock affect orchard performance and profitability. To provide guidance to growers in northern cold climates on these choices, a field trial was established in Peru, Clinton County, NY, in 2002, with two apple cultivars (Honeycrisp and McIntosh). From 2002 through 2016, we compared Central Leader on ‘M.M.111’; Slender Pyramid on ‘M.26’ and ‘Geneva® 30’ (‘G.30’); Vertical Axis on ‘M.9 (Nic® 29)’ (‘M.9’), ‘Budagovsky 9’ (‘B.9’), and ‘G.16’; SolAxe on ‘M.9’, ‘B.9’, and ‘G.16’; and Tall Spindle on ‘M.9’, ‘B.9’, and ‘G.16’. Central Leader was planted at 539 trees/ha, Slender Pyramid at 1097 trees/ha, Vertical Axis and SolAxe at 1794 trees/ha, and Tall Spindle at 3230 trees/ha. Cumulative yield was higher with ‘McIntosh’ than with ‘Honeycrisp’. High planting densities (Tall Spindle) gave the highest cumulative yields (593 t·ha−1 on ‘McIntosh’ and 341 t·ha−1 on ‘Honeycrisp’). Tall Spindle (3230 trees/ha) on ‘M.9’ appeared to be the best option for ‘McIntosh’. On the other hand, for a weak-growing cultivar such as ‘Honeycrisp’, Tall Spindle on ‘B.9’ (366 t·ha−1) and Slender Pyramid (1097 trees/ha) on ‘G.30’ (354 t·ha−1) were the two combinations with the highest cumulative yield, largest fruit size (220–235 g), and greatest efficiency index (4.6–3.9 kg·cm−2).

Free access

Orchard profitability relies on multiple factors such as cultivar, planting density, training system, rootstock, and fruit quality but is also strongly affected by growing climate and soil resources. To evaluate orchard profitability in a northern cold climate, a field trial was planted in Peru, Clinton County, NY, in 2002, with two apple cultivars (Honeycrisp and McIntosh), where we compared the Central Leader (CL) training system on ‘M.M.111’ rootstock; Slender Pyramid (SP) on ‘M.26’ and ‘Geneva® 30’ (‘G.30’); Vertical Axis (VA) on ‘M.9 (Nic® 29)’ (‘M.9’), ‘Budagovsky 9’ (‘B.9’), and ‘G.16’; SolAxe (SA) on ‘M.9’, ‘B.9’, and ‘G.16’; and Tall Spindle (TS) on ‘M.9’, ‘B.9’, and ‘G.16’. CL was planted at 539 trees/ha, SP at 1097 trees/ha, VA and SA at 1794 trees/ha, and TS at 3230 trees/ha. The aim of this study was to evaluate the economic profitability of ‘Honeycrisp’ and ‘McIntosh’ at a wide range of planting densities, training systems, and rootstocks for cold areas such as northern New York state. A secondary goal was to assess the effect of various economic factors on the net present value (NPV) of each combination of training system, rootstock, and density. High NPV was achieved with ‘Honeycrisp’ (≈$450,000/ha), whereas NPV was significantly lower with ‘McIntosh’ (≈$80,000/ha). Within ≈5 years, ‘Honeycrisp’ planted in a TS (3230 trees/ha) reached a positive NPV, whereas 9 years were needed when ‘Honeycrisp’ was planted in a CL system at 539 trees/ha. With ‘McIntosh’, break-even year to positive NPV (BYPNPV) was reached at 9 years for TS on ‘M.9’. Most of the other training system and rootstock combinations needed up to 11–13 years to show a positive NPV. The most important variables affecting orchard NPV in our trial were fruit price and yield. The best option for ‘Honeycrisp’ in northern New York State appears to be TS on either ‘B.9’ or ‘M.9’, whereas with ‘McIntosh’, the best option appears to be TS on ‘M.9’.

Free access

Abstract

Limbs of ‘Miller Sturdeespur Delicious’ apple trees (Malus domestica Borkh.) with bearing spurs ranging in age from 2 to 11 years were provided with differing solar exposure levels ranging from 5% to 95% of full sunlight (400 to 700 nm) from 55 days postbloom until harvest. As the exposure level of the limb canopy was reduced, fruit length, width, weight, soluble solids, starch content, and total solids were reduced while fruit firmness and total acidity were increased. Visual fruit red color of this high-coloring strain was not affected. As spur age increased, fruit length, width, weight, and soluble solids decreased while fruit firmness and total acidity increased. Spur age did not influence fruit red color, starch content, or total solids. Light exposure level accounted for a relatively large portion of the variation in fruit size and quality between limbs while spur age accounted for only a small portion of the variation within each limb.

Open Access

The Geneva® Apple Rootstock Breeding program initiated in 1968 by Cummins and Aldwinckle of Cornell University and continued as a joint breeding program with the USDA-ARS since 1998, has released a new dwarf apple rootstock named Geneva® 41 or G.41. G.41 (a progeny from a 1975 cross of `Malling 27' × `Robusta 5') is a selection that has been tested at the N.Y. State Agricultural Experiment Station, in commercial orchards in the United States, and at research stations across the United States, Canada, and France. G.41 is a fully dwarfing rootstock with vigor similar to M.9 T337, but with less vigor than M.9 Pajam2. It is highly resistant to fire blight and Phytophthora with no tree death from these diseases in field trials or inoculated experiments. G.41 has also shown tolerance to replant disease. Its precocity and productivity have been exceptional, equaling M.9 in all trials and surpassing M.9 in some trials. It also confers excellent fruit size and induces wide crotch angles in the scion. It appears to be very winter hardy and showed no damage following the test winter of 1994 in New York. Propagation by layering in the stool bed G.41 is not consistent and may require higher layering planting densities or tissue culture mother plants to improve its rooting. G.41 also produces some side shoots in the stool bed. The nursery liners of G.41 produce a smaller tree than G.16 liners, but similar to M.9, which is very acceptable. Unlike G.16, G.41 is not sensitive to latent viruses. G.41 has similar graft union strength to M.9 and requires a trellis or individual tree stake when planted in the orchard. Suggested orchards planting densities with this rootstock are 2,000-4,000 trees/ha. This rootstock has been released for propagation and commercial sale by licensed nurseries.

Free access

The Geneva® Apple Rootstock Breeding program, which was initiated in 1968 by Dr. James Cummins and Dr. Herb Aldwinckle of Cornell University and which has been continued as a joint breeding program with the U.S. Dept. of Agriculture Agricultural Research Service (USDA-ARS) since 1998, has released a new semi-dwarfing apple rootstock which is named Geneva® 935 or G.935. G.935 (a progeny from a 1976 cross of `Ottawa 3' × `Robusta 5') is a selection that has been widely tested at the New York State Agricultural Experiment Station in Geneva, N.Y., in commercial orchards in the United States and at research stations across the United States and Canada. G.935 is a semi-dwarfing rootstock that produces a tree slightly larger than M.26. G.935 is the most precocious and productive semi-dwarf rootstock we have released. It has had similar yield efficiency to M.9 along with excellent fruit size and wide crotch angles. It showed no symptoms of winter damage during the 1994 test winter in N.Y. G.935 is resistant to fire blight and Phytophthora; however. it is susceptible to infestations by woolly apple aphids. G.935 has shown tolerance to replant disease complex in several trials. It has good propagation characteristics in the stool bed and produces a large tree in the nursery. G.935 has better graft union strength than M.9, but will require a trellis or individual tree stake in the orchard to support the large crops when the tree is young. G.935 will be a possible replacement for M.26. Suggested orchards planting densities with this rootstock are 1,500-2,500 trees/ha. It has been released for propagation and sale by licensed nurseries. Liners will be available in the near future.

Free access