Search Results
You are looking at 21 - 30 of 33 items for
- Author or Editor: Stan Hokanson x
Commercial strawberry plantings in the mid-Atlantic region are often quickly infected with one or more aphid-transmitted viruses, resulting in the loss of plant vigor, stunting, lowered yields, etc. To produce virus-free plant material for the strawberry industry and for cultivar development programs, heat therapy and/or meristem tip culture protocols are generally employed. One of the problems associated with meristem culturing is the potential for somaclonal mutations to occur in the meristem or surrounding proliferating tissue. As a result, distinct “bud lines” displaying functionally insignificant to distressingly high levels of phenotypic variation can arise from individual meristems. It would be desirable to differentiate these off-types by genetic fingerprinting to maintain trueness-to-type. Randomly amplified polymorphic DNA (RAPD) markers were evaluated for the potential to differentiate six pairs of strawberry bud lines that exhibit slight to fairly extreme levels of phenotypic variation. Reproducible RAPD marker profiles were generated using 10 primers in amplification reactions with genomic DNA obtained from multiple extractions. While five of the bud line pairs remained indistinguishable, three primers distinguished two variants of the Mohawk cultivar that are now in existence in the strawberry industry. Results suggest that typical somaclonal variation produced in the meristem culture process is of a magnitude that is not readily detectable with the RAPD protocol. The two Mohawk lines were probably produced by a higher magnitude mutation event than generally occurs or a cultivar mix-up.
Oakleaf hydrangea (Hydrangea quercifolia) is an understory shrub native to the southeastern United States. The species occupies a relatively small native range, and little is known about its demography, genetic diversity, or needs for conservation. Samples were collected from 188 plants in 73 locations throughout the species range and were genotyped using genotyping by sequencing. A structure analysis identified six genetic clusters that are geographically defined. Although these clusters are weakly differentiated, each has unique alleles. An environmental association analysis revealed that environmental variables explain 11.3% of genetic diversity, and population structure explains 13.5%. Further, 231 putative adaptive alleles were identified, most of which are correlated with precipitation-related variables, indicating that precipitation has an impact on genetic diversity in H. quercifolia. Many historically documented populations were found to be either extirpated or at risk of extirpation. The genetic clusters on the southern extent of the species range are relatively small and contain putative adaptive alleles at relatively high frequencies. These results highlight the importance of preserving representative germplasm from throughout the species range.
Larvae of several insects injure and kill strawberry (Fragaria ×ananassa Duchesne) plants by burrowing into and hollowing out plant crowns. Occasionally, these infestations are serious enough to cause heavy economic losses to fruit producers and nursery plant growers. In 1997 in Beltsville, Md., we observed wilting and dying mature plants and unrooted runner plants in two experimental strawberry plantings. Injury by larvae was extensive; large cavities occurred in crowns, and the central pith tissues were removed from stolons and leaf petioles. Often, insect frass was seen at entrance holes. Larvae removed from hollowed-out parts of injured plants were identified as the European corn borer (Ostrinia nubilalis Hübner) in their fifth instar stage. Their presence in this instance also was associated with a cover crop of millet [Setaria italica (L.) P. Beauv., `German Strain R'] planted between the strawberry rows for weed suppression. This is the first published report of the European corn borer attacking strawberry. Although this insect may occur only sporadically in strawberry plantings, it may become important in the future. Growers and other professionals should become aware of this new strawberry pest and recognize that its management in strawberry will be different from management of other crown-boring insects.
Oakleaf hydrangea (Hydrangea quercifolia Bartr.) is an understory shrub native to the southeastern United States. Hydrangeas are popular ornamental landscape plants; however, little is known about the diversity in horticulturally important traits for oakleaf hydrangea. Information regarding the variation in important traits could guide future breeding efforts for the species. Seed was collected from 55 populations throughout the range of the species for the purpose of conducting a horticultural characterization of the species compared with select cultivars. Plant architecture was characterized as plant height, number of nodes, internode length, number of branches, and plant width. Plant architecture was measured for container-grown and field-grown plants in two locations (Minnesota and Tennessee). Tolerance to leaf spot (Xanthomonas campestris L.) was characterized for wild-collected seedlings and cultivars by measuring disease severity under exposure to ambient inoculum. Cold hardiness was characterized during two winters with a controlled freezing experiment. During the first winter, seedlings were tested in January; during the second winter, seedlings and cultivars were tested monthly from October through April. Plant architecture varied by environment, with plants growing larger in Tennessee than in Minnesota. The heights of container-grown and field-grown plants were correlated with the collection site latitude (r = −0.66), with populations from the northeastern extent of the range of the species being the most compact, and populations from Florida being the tallest. Leaf spot severity varied significantly among populations and cultivars and was also correlated with latitude for the seedlings (r = 0.70). Two populations in Florida were identified as sources of high tolerance to leaf spot, whereas ‘Flemygea’ and ‘Alice’ were identified as having moderate tolerance to leaf spot. Cold hardiness varied among populations and cultivars and among months of the winter. The overall maximum cold hardiness was observed in February [mean lethal temperature (LT50) = −33.7 °C], and several populations maintained an extreme level of cold hardiness into late winter. Midwinter cold hardiness also varied by latitude (r = −0.65), with northern populations showing higher levels of cold hardiness. These results indicate that certain wild oakleaf hydrangea populations will be useful for introgressing novel variation into breeding programs.
Tissue-culture derived mother plants were established in a greenhouse suspended-gutter, nutrient-film technique growing system to evaluate runner tip productivity in the system. Effects of cultivar (`Allstar', `Chandler', `Latestar', `Northeaster', and USDA selection B 27) and duration (0, 1, or 2 months) of cold storage at 1 °C on tip viability, rooting success, and performance in fruit production were determined. The average number and weight of runner tips produced in the gutter production system, the capacity of runner tips to form cohesively rooted plug plants, and the number and length of adventitious roots produced by runner tips varied significantly among the cultivars and the three storage durations (0, 1, or 2 months). In the field, plants produced from runner tips stored for 2 months produced more runners than plants produced from freshly harvested runner tips. Crown number differed among the cultivars, but was not affected by cold storage treatment. No treatment differences were noted for the fruit harvest parameters evaluated. The results suggest that the transplants derived from mother plants grown in a greenhouse-based soilless system can be useful for annual plasticulture strawberry production in colder climates. Although long periods of cold storage of runner tips resulted in lower tip-to-transplant conversion ratios, field performance of transplants was not adversely affected. Additional research is needed to improve greenhouse strawberry production practices for increasing runner output and storage conditions that maintain the integrity of cold-stored runner tips. Without these improvements it is unlikely that soilless runner tip production will become a widely accepted technique that would replace the field nursery tip production method currently used by commercial strawberry propagators.
Bacterial angular leafspot disease (BALD) of strawberry (Fragaria sp. and F. ×ananassa Duchesne cultivars) has become increasingly destructive to strawberry fruit and plant production in Canada and the United States, as well as in other countries. The disease, caused by Xanthomonas fragariae Kennedy and King, was first documented in Minnesota in 1960, and has become of worldwide concern because of the economic impact of BALD in strawberry fruit and nursery-plant production and the lack of adequate disease control strategies. We tested 81 Fragaria genotypes, including representatives of F. ×ananassa, F. chiloensis (L.) Duchesne, F. virginiana Duchesne, and F. vesca L., for resistance to two pathogenic strains of X. fragariae. Two genotypes, a native F. virginiana from Minnesota and an F. virginiana × F. ×ananassa hybrid, were found to resist infection by both bacterial strains and may be potential sources of resistance to other strains of X. fragariae.
Regional, replicated cultivar trials of landscape roses are an ongoing component of the Earth-Kind® program, which was started at Texas A&M University in the 1990s to support environmental landscape stewardship. The rose trials within the Earth-Kind program identify and promote the most regionally adapted rose cultivars and are conducted without fertilizers or pesticides and greatly reduced irrigation. Black spot (caused by Diplocarpon rosae Wolf) is the most serious disease of outdoor-grown roses worldwide as a result of the potential for rapid leaf yellowing and defoliation. Earth-Kind designated cultivars for the south–central United States and roses under trial in other regions or considered for future Earth-Kind trials (n = 73 roses) and two susceptible control cultivars were challenged with North American Races 3, 8, and 9 of D. rosae, which were previously characterized at the University of Minnesota. Young expanded leaves were inoculated using detached leaf assays. Lesion length (LL) was measured for susceptible reactions and cultivar ploidy was determined using root tip squashes. Diploid, triploid, and tetraploid cultivars (n = 20, 30, and 23, respectively) were identified, and race-specific resistances and partial resistances were also identified. Race-specific resistance was generally more prevalent in newer rose cultivars and rose cultivars more recently included in Earth-Kind trials. Nine cultivars were resistant to all three races (Brite Eyes™, ‘Grouse’, Home Run®, Knock Out®, Paprika™, Peachy Cream™, Pink Knock Out®, Rainbow Knock Out®, and Yellow Submarine™). Blushing Knock Out®, a sport of Knock Out®, was susceptible to Race 8. Partial resistance rank for LL was generally consistent across races for roses susceptible to multiple races. The application of these data includes: characterizing the minimum resistance level needed for roses to warrant inclusion in Earth-Kind field trials, the identification of additional race-specific resistance genes, identifying resistance-breaking isolates of D. rosae, understanding race composition in field trials based on infection patterns of key cultivars, selection of parents for resistance breeding efforts, and continued comparisons between LL and growing bodies of Earth-Kind field resistance data.
Deciduous azaleas are an important element of residential and commercial landscapes in the United States after substantial trait improvements to increase their market appeal. Despite progress in breeding for ornamental characteristics and cold hardiness, intolerance to elevated pH and calcareous soils continues to limit their use in managed landscapes. Therefore, we assessed the utility of in vitro and greenhouse phenotyping approaches to evaluate and select for improved soil pH tolerance to increase the efficiency of breeding for this important trait. The research presented offers an example for implementing image-based phenotyping to expedite cultivar development in woody ornamental crops.
Malus sieversii, the main progenitor of domesticated apple, is native to areas in Central Asia. To better represent Malus wild germplasm in the USDA–ARS germplasm collections, maintained in Geneva, N.Y., a cooperative project was initiated with the Republic if Kazakhstan to collect and assess that country's wild populations of M. sieversii and to develop more secure in situ reserves to complement ex situ holdings in the United States and Kazakhstan. To date, four exploration trips to the region have included participants from the United States, Kazakhstan, Canada, New Zealand, and South Africa. Four Kazkh scientists have toured USDA–ARS sites, exchanged information, and collected germplasm in the United States greenhouse screens of 1600 have revealed potentially new sources of resistance to apple scab, cedar apple rust, and fire blight. An isozyme analysis of maternal half-sib families from four regions suggests the populations of M. sieversii collected represent a single panmictic population, with over 85% of total genetic variation due to differences among families. The most recent collections in 1995 were directed towards more ecologically diverse regions, including a site (Tarbagatai) at the most northern limit for M. sieversii equivalent to northern Minnesota in the United States. Some trees in this region produced fruit nearly 70 mm in diameter with excellent aroma, firmness, and color. This germplasm is being systematically characterized for horticultural traits, pest and disease resistance, and molecular markers.