Search Results
You are looking at 21 - 30 of 43 items for
- Author or Editor: Ryan N. Contreras x
American beautyberry (Callicarpa americana) is a deciduous shrub native to the southeast United States and is grown primarily for its metallic-purple fruit that develop in the fall. There are also pink- and white-fruiting and variegated forms but these traits are rare in nature and there is no information available regarding their inheritance. Also, there is confusion regarding self-compatibility and the presence of apomixis in Callicarpa L. Crosses were performed to investigate the genetics of fruit color, self-compatibility, and apomixis in american beautyberry. Test crosses between C. americana (CA) and C. americana ‘Lactea’ (CAL) suggested that white fruit is recessive to purple. White fruit appears to be controlled by a single recessive gene for which we propose the name white fruit and the gene symbol wft. Although there were only a limited number of progeny grown, crosses between CA and ‘Welch’s Pink’ suggest that purple is dominant to pink. Test crosses between CAL and ‘Welch’s Pink’ are needed to draw conclusions; however, we propose that purple, pink, and white fruit are controlled by an allelic series for which we suggest the gene symbols Wft > wft p > wft. Segregation ratios suggested that all progeny in the study developed through sexual hybridization. All genotypes used in the current study were self-compatible.
Lilacs (Syringa sp.) have been used as ornamental plants since the mid-16th century and remain important in modern gardens due to their attractive and fragrant flowers. However, a short flowering season is a critical drawback for their ornamental value. Breeders have identified remontancy (reblooming) in dwarf lilac (Syringa pubescens), and have tried to introgress this trait into related species by interspecific hybridization. Molecular tools for lilac breeding are limited because of the shortage of genome sequence knowledge and currently no molecular markers are available to use in breeding for remontancy. In this study, an F1 population from crossing Syringa meyeri ‘Palibin’ × S. pubescens ‘Penda’ Bloomerang® Purple was created and subjected to genotyping-by-sequencing (GBS) analysis and phenotyped for remontancy. Plants were categorized as remontant, semi-remontant, and nonremontant based on the relative quantity of inflorescences during the second flush of flowers. A total of 20,730 single-nucleotide polymorphism (SNP) markers from GBS were used in marker-trait association to find remontant-specific marker(s) without marker position information. Two SNP markers, TP70580 (A locus) and TP82604 (B locus), were correlated with remontancy. The two loci showed a partial epistasis and additive interaction effects on the level of remontancy. Accumulation of recessive alleles at the two loci was positively correlated with increased reblooming. For example, 87% of aabb plants were remontant, and only 9% were nonremontant. In contrast, 100% of AaBB plants were nonremontant. These two SNP markers associated with remontancy will be useful in developing markers for future breeding and demonstrate the feasibility of developing markers for breeding woody ornamental taxa that lack a reference genome or extensive DNA sequence information.
Ornamental grasses such as fountaingrass or napiergrass, collectively called pennisetums, belong to the genus Pennisetum, which is a diverse genus with over 80 species adapted to a wide range of climatic regions and known for its drought tolerance. Breeding efforts have led to improvements such as more intense purple foliage color, disease resistance, and apparent sterility. These improved forms have been developed and tested in the eastern United States. The objective of this research was to evaluate container and field performance of seven new complex hybrid pennisetums in the Pacific northwestern United States. Two completely randomized experiments with three replications were conducted over 2 years (2010 and 2011) at two locations. We selected seven trispecific hybrid pennisetums resulting from interploid and interspecific crossing that were given accessions Tift 5, Tift 6, Tift 10, Tift 11, Tift, 13, Tift 15, and Tift 26. Experiment 1 evaluated container performance in Corvallis, OR, while Expt. 2 evaluated field performance in Aurora, OR. Size index (SI), growth form rating, and color rating were collected and analyzed separately by location. In the container study, significant differences were observed among selections for growth form in 2010 and color ratings in both 2010 and 2011. In 2010, Tift 6, Tift 11, Tift 13, and Tift 15 had the highest growth form rating. For color rating, Tift 5, Tift 10, and Tift 26 were among the four highest rated selections in both years. In the field study, Tift 5, Tift 10, Tift 11, and Tift 26 had the highest SI when data were pooled over the 2 years, but all selections reached acceptable size for landscape use during both years of the study. Similarly, there were color differences among selections with Tift 5, Tift 10, Tift 15, and Tift 26 being highest rated. None of the selections survived below winter temperatures of −5 °C at either location during either year of the study. Our evaluations indicate that these selections have potential in the Pacific northwestern United States as annuals. Differences in complex hybrid pennisetums were observed in SI, growth form rating, and color rating. These differences demonstrated the variation among selections and will allow producers to choose desired traits based on market preference.
Hibiscus acetosella Welw. ex Hiern. ‘Panama Red’ PP20,121 (Malvaceae) has generated public and grower interest due to its attractive red foliage and vigorous growth, however, a horticultural goal is to develop more compact forms. Even though organs of induced polyploids are often larger than the wild type, whole plants are often shorter in stature. Three studies were conducted to induce polyploidy and to evaluate the growth and reproductive potential of the resulting polyploids. In study 1, seeds were soaked for 24 hours in aqueous solutions of 0%, 0.2%, 0.4%, or 0.5% colchicine (w/v) plus 0.5% dimethyl sulfoxide. In studies 2 and 3, apical meristems of seedlings at the cotyledon stage were treated for 1 or 3 days with 0, 50, 100, or 150 μm oryzalin solidified with 0.8% agar. Visual observations and measurement of guard cells were used to identify plants that potentially had their chromosome number doubled. Flow cytometry of nuclei stained with DAPI was used for confirmation of polyploidy. No induced polyploidy was observed following seed treatment with colchicine at the rates and duration used in this study. One-time application of 50 μm oryzalin resulted in a single mixoploid (4x + 8x) in which the ploidy of the L-I, L-II, and L-III histogenic layers were identified as a 4–4-4 + 8, respectively. Three-day applications with 100 and 150 μm oryzalin resulted in an octoploid (8x) and a mixoploid (4x + 8x), respectively. The mixoploid from the 3-day treatment stabilized at the 8x level before flowering, but was identified as a 4 + 8-x-4 cytochimera. Plant height was reduced, leaves were smaller, internodes were shorter, and canopy volume was reduced in the octoploid (8x) form compared with the tetraploid (4x) form. Furthermore, in contrast to the tetraploid, the octoploid produced no self-pollinated seed and performed poorly as a staminate and pistillate parent in controlled crosses. This represents the first time oryzalin has been reported to induce polyploidy in Hibiscus L. section Furcaria DC. H. acetosella is an allotetraploid species with the genome composition AABB. The resulting autoallooctoploid (AAAABBBB) form of ‘Panama Red’ exhibits a more compact habit and reduced production of seed.
Hibiscus syriacus is a woody shrub in the Malvaceae family that is common in landscapes due to its broad adaptability and variable ornamental characteristics. Interspecific hybridization has been used to improve Hibiscus by building novel floral traits, hybrid vigor, and hybrid infertility. A few interspecific hybrid Hibiscus cultivars (H. syriacus × H. paramutabilis), such as Lohengrin and Resi, are notable because of their vigorous vegetative growth, female infertility, and large flowers. However, little is known about the male fertility and breeding potential of these hybrid cultivars, which could increase flower size by backcrossing to H. syriacus. In this study, we estimated male fertility of the two hybrid cultivars by acetocarmine staining and in vivo pollination and assessed selection methods for floral traits, specifically flower size and petal number. A BC1F1 population of 294 individuals was developed by crossing hybrid cultivars Lohengrin or Resi with a variety of double-flowered H. syriacus cultivars. A negative correlation between petal number and petal area was detected by quantile regression, which is a method that circumvents the problem of simple linear regression, which violates statistical assumptions. Quantile regression was used to build simultaneous selection thresholds for different levels of required stringency. As expected, the female fertility of hybrid cultivars was extremely low or zero; however, the male fertility of hybrid cultivars was not reduced compared with H. syriacus cultivars. A negative linear correlation between the petal number and petal area of the BC1F1 individuals was observed. In addition, quantile regression was recommended to set a single selection threshold to be applied to the selection of two negatively correlated traits, which was more effective than independent selection of petal numbers and petal areas among progeny.
Althea (Hibiscus syriacus) is a shrub prized for its winterhardiness and colorful summer flowers. Altheas are tetraploids (2n = 4x = 80); however, breeders have developed hexaploids and octoploids. Previous studies report anatomical variation among polyploids, including stomata size. The purpose of this study was 4-fold. First, identify genome size and ploidy variation in cultivars via flow cytometry and chromosome counts. Second, create a ploidy series consisting of 4x, 5x, 6x, and 8x cytotypes. Third, investigate the ploidy series for variation in stomatal guard cell lengths, stomatal density, and copy number of fluorescent ribosomal DNA (rDNA) signals. Fourth, investigate segregation patterns of rDNA signals in a subset of pentaploid seedlings. Flow cytometry revealed most cultivars to be tetraploid with holoploid 2C genome sizes from 4.55 ± 0.02 to 4.78 ± 0.06 pg. Five taxa (‘Aphrodite’, ‘Pink Giant’, ‘Minerva’, Azurri Satin®, and Raspberry Smoothie™) were hexaploids (6.68 ± 0.13 to 7.05 ± 0.18 pg). Peppermint Smoothie™ was a cytochimera with tetraploid cells (4.61 ± 0.06 pg) and octoploid cells (8.98 ± 0.13 pg). To create pentaploids, reciprocal combinations were made between hexaploid ‘Pink Giant’ and tetraploid cultivars. To create octoploids, seedlings were treated with agar solutions containing 0.2% colchicine or 125 μM oryzalin. Guard cell lengths were significantly different among the four cytotypes: 4x (27.36 ± 0.04 μm), 5x (30.35 ± 1.28 μm), 6x (35.59 ± 0.63 μm), and 8x (40.48 ± 1.05 μm). Measurements of stomatal density revealed a precipitous decline in average density from the 4x cytotype (398.22 ± 15.43 stomata/mm2) to 5x cytotype (194.06 ± 38.69 stomata/mm2) but no significant difference among 5x, 6x, and 8x cytotypes. Fluorescent in situ hybridization (FISH) revealed an increase in 5S and 45S rDNA signals that scaled with ploidy: 4x (two 5S + four 45S), 6x (three 5S + six 45S), and 8x (four 5S + eight 45S). However, pentaploid (5x) seedlings exhibited random segregation of rDNA signals between the 4x and 6x cytotypes, including all six possible combinations (two 5S, three 5S) × (four 45S, five 45S, six 45S).
The genus Cotoneaster (Rosaceae, Maloideae) is highly diverse, containing ≈400 species. Like other maloids, there is a high frequency of naturally occurring polyploids within the genus, with most species being tetraploid or triploid. Apomixis is also prevalent and is associated with polyploidy. The objective of this study was to estimate genome sizes and infer ploidy levels for species that had not previously been investigated as well as compare estimates using two fluorochromes and determine base pair (bp) composition. Chromosome counts of seven species confirmed ploidy levels estimated from flow cytometric analysis of nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI). Monoploid (1Cx) genome sizes ranged from 0.71 to 0.96 pg. Differences in monoploid genome size were not related to current taxonomic treatment, indicating that while chromosome sizes may vary among species, there are no clear differences related to subgeneric groups. A comparison of DAPI and propidium iodide (PI) showed a difference in DNA staining in Cotoneaster comparable to other rosaceous species. Base pair composition (AT%) in Cotoneaster ranged from 58.4% to 60.8%, which led to overestimation of genome size estimates in many cases—assuming the estimates of the DNA intercalator are accurate. Our findings will inform breeders with regard to the reproductive behavior of potential parents and may be used to confirm hybrids from interploid crosses.
‘Schipkaensis’ common cherrylaurel (Prunus laurocerasus) is an important nursery crop across the United States. In our breeding efforts to reduce shot-hole symptoms and weediness, we have created chromosome doubled forms of this cultivar. Vegetative propagation is an important factor in nursery production, and we have found no studies that have looked at comparative adventitious rooting of stem cuttings using induced polyploids. The objective of this research was to determine if rooting ability varied between these two ploidy levels. Semihardwood stem cuttings from wild-type (22x) and polyploid (44x) ploidy levels were taken at the end of July 2015 and the beginning of July 2016. Cuttings were dipped in 1030 ppm (0.10%) indole-3-butyric acid (IBA) and 660 ppm (0.066%) 1-naphthaleneacetic acid (NAA) before being set in rooting substrate. After 1 month, cuttings were removed from substrate and data collected. Data included; rooting percentage, root number per rooted cutting, average root length, and total root length. In 2015, 88% of the cuttings from the 44x plants and 63% of the cuttings from the 22x plants rooted. In 2016, 100% of cuttings from both ploidy levels rooted. In both years, average root length and total root length were similar between ploidy levels; however, cuttings from 22x plants generally had more roots than those from 44x. Chromosome-doubled ‘Schipkaensis’ common cherrylaurel rooted effectively, and produce transplantable cuttings similar to the standard ploidy.
A tissue culture protocol was developed to germinate immature Prunus lusitanica seeds in vitro. The study was conducted by first identifying the best media for germination, followed by investigating effects of seed conditioning. In Expt. I, seeds were collected 12 weeks after pollination (WAP) ± 1 week and placed on media after removing the pericarp. Eight different MS media (Murashige and Skoog, 1962) were tested (M1–M8) containing two concentrations each of 6-benzylaminopurine (BA), gibberellic acid (GA3), and sucrose. The longest shoots resulted from M4 (1.45 µm GA3, 6 µm BA, and 30 g·L−1 sucrose), followed by M1 (0 µm GA3, 3 µm BA, and 30 g·L−1 sucrose). Radicle and shoot emergence was greater than or equal to 90% for M1, M3, and M4 after a stratification treatment. In Expt. II, M1 was used to test root and shoot emergence at 6, 9, and 12 WAP, with and without cold stratification. Little success was seen 6 and 9 WAP, with only callus development in 6 WAP, nonstratified seed. Cold stratification increased shoot emergence in the 12 WAP group from 4% to 28%, appearing to be critical for shoot emergence. If the cotyledons are retained on the seed, future efforts to expedite breeding of P. lusitanica using in vitro germination should not be collected before 12 WAP and will benefit from cold stratification before germinating on M1 or M4. Chemical names: 6-benzylaminopurine (BA), gibberellic acid (GA3).
Wide hybridization can lead to recombination of diverse traits and creation of unique phenotypes, but the resultant hybrids are often sterile as is the case with the intersubgeneric hybrid Rhododendron L. ‘Fragrant Affinity’. Sterility in wide hybrids can either be genic or chromosomal; the latter may be overcome by induction of polyploidy, which can restore chromosome homology and fertility. Cytologic studies of ‘Fragrant Affinity’ appear to support the presence of bridges between bivalents in metaphase I and laggard chromosomes in anaphase I. In the current study, an allotetraploid form of R. ‘Fragrant Affinity’ was developed using oryzalin (4-(dipropylamino)-3, 5-dinitro-benzenesulfonamide) as a mitotic inhibitor and chromosomal doubling agent. Genome sizes (2C) were determined using flow cytometry and found to be ≈1.6 and 3.2 pg for the diploid and allotetraploid, respectively. Pollen viability, determined by staining and germination tests, was 4% and 0%, respectively, for the diploid and 68% and 45%, respectively, for the allotetraploid. No seeds were produced when the diploid R. ‘Fragrant Affinity’ was used as a pistillate parent when pollinated with pollen from viable diploid and tetraploid parents. The allotetraploid produced viable seeds and seedlings when pollinated with pollen from either diploid or tetraploid parents, including self-pollination, demonstrating restored male and female fertility.